Features

- Zarlink ST-BUS compatible
- 8 -line $\times 32$-channel inputs
- 8 -line x 32-channel outputs
- 256 ports non-blocking switch
- Single power supply (+5 V)
- Low power consumption: 30 mW Typ.
- Microprocessor-control interface
- Three-state serial outputs

Ordering Information	
ZL50000DE	40 Pin Plastic DIP
ZL50000DP	44 Pin PLCC
ZL50000DE1	40 Pin Plastic DIP*
ZL50000DP1	44 Pin PLCC*
	ree Matte Tin C to $+85^{\circ} \mathrm{C}$

Description

This VLSI ISO-CMOS device is designed for switching PCM-encoded voice or data, under microprocessor control, in a modern digital exchange, PBX or Central Office. It provides simultaneous connections for up to $25664 \mathrm{kbit} / \mathrm{s}$ channels. Each of the eight serial inputs and outputs consist of $3264 \mathrm{kbit} / \mathrm{s}$ channels multiplexed to form a 2048 kbit/s ST-BUS stream. In addition, the ZL50000 provides microprocessor read and write access to individual ST-BUS channels.

Figure 1 - Functional Block Diagram

Figure 2 - Pin Connections

Pin \#		Name	Description
$\begin{aligned} & 40 \\ & \text { DIP } \end{aligned}$	PLCC		
1	2	$\overline{\text { DTA }}$	Data Acknowledgement (Open Drain Output). This is the data acknowledgement on the microprocessor interface. This pin is pulled low to signal that the chip has processed the data. A $909 \Omega, 1 / 4 \mathrm{~W}$, resistor is recommended to be used as a pullup.
2-4	3-5	$\begin{aligned} & \text { STiO- } \\ & \text { STi2 } \end{aligned}$	ST-BUS Input 0 to 2 (Inputs). These are the inputs for the 2048 kbit/s ST-BUS input streams.
5-9	7-11	STi3- STi7	ST-BUS Input 3 to 7 (Inputs). These are the inputs for the $2048 \mathrm{kbit} / \mathrm{s}$ ST-BUS input streams.
10	12	$V_{\text {D }}$	Power Input. Positive Supply.
11	13	FOi	Framing 0-Type (Input). This is the input for the frame synchronization pulse for the 2048 $\mathrm{kbit} / \mathrm{s}$ ST-BUS streams. A low on this input causes the internal counter to reset on the next negative transition of C 4 i .
12	14	$\overline{\mathrm{C} 4 i}$	4.096 MHz Clock (Input). ST-BUS bit cell boundaries lie on the alternate falling edges of this clock.
$\begin{aligned} & 13- \\ & 15 \end{aligned}$	$\begin{aligned} & 15- \\ & 17 \end{aligned}$	A0-A2	Address 0 to 2 (Inputs). These are the inputs for the address lines on the microprocessor interface.
$\begin{aligned} & 16- \\ & 18 \end{aligned}$	$\begin{aligned} & 19- \\ & 21 \end{aligned}$	A3-A5	Address 3 to 5 (Inputs). These are the inputs for the address lines on the microprocessor interface.
19	22	DS	Data Strobe (Input). This is the input for the active high data strobe on the microprocessor interface.
20	23	R / W	Read or Write (Input). This is the input for the read/write signal on the microprocessor interface - high for read, low for write.
21	24	$\overline{\mathrm{CS}}$	Chip Select (Input). This is the input for the active low chip select on the microprocessor interface.
$\begin{aligned} & 22- \\ & 24 \end{aligned}$	$\begin{aligned} & 25- \\ & 27 \end{aligned}$	D7-D5	Data 7 to 5 (Three-state I/O Pins). These are the bidirectional data pins on the microprocessor interface.

Pin \#		Name	Description
$\begin{aligned} & 40 \\ & \text { DIP } \end{aligned}$	PLCC		
$\begin{aligned} & 25- \\ & 29 \end{aligned}$	$\begin{aligned} & 29 \\ & 33 \end{aligned}$	D4-D0	Data 4 to 0 (Three-state I/O Pins). These are the bidirectional data pins on the microprocessor interface.
30	34	$\mathrm{V}_{\text {ss }}$	Power Input. Negative Supply (Ground).
$\begin{aligned} & 31- \\ & 35 \end{aligned}$	$\begin{gathered} 35- \\ 39 \end{gathered}$	$\begin{aligned} & \text { STo7- } \\ & \text { STo3 } \end{aligned}$	ST-BUS Output 7 to 3 (Three-state Outputs). These are the pins for the eight 2048 kbit/s ST-BUS output streams.
$\begin{aligned} & 36- \\ & 38 \end{aligned}$	$\begin{aligned} & 41- \\ & 43 \end{aligned}$	$\begin{aligned} & \text { STo2- } \\ & \text { STo0 } \end{aligned}$	ST-BUS Output 2 to 0 (Three-state Outputs). These are the pins for the eight 2048 kbit/s ST-BUS output streams.
39	44	ODE	Output Drive Enable (Input). If this input is held high, the STo0-STo7 output drivers function normally. If this input is low, the STo0-STo7 output drivers go into their high impedance state. NB: Even when ODE is high, channels on the STo0-STo7 outputs can go high impedance under software control.
40	1	CSTo	Control ST-BUS Output (Complementary Output). Each frame of 256 bits on this ST-BUS output contains the values of bit 1 in the 256 locations of the Connection Memory High.
	$\begin{gathered} \hline 6,18, \\ 28, \\ 40 \end{gathered}$	NC	No Connection.

Functional Description

In recent years, there has been a trend in telephony towards digital switching, particularly in association with software control. Simultaneously, there has been a trend in system architectures towards distributed processing or multi-processor systems.

In accordance with these trends, ZARLINK has devised the ST-BUS (Serial Telecom Bus). This bus architecture can be used both in software-controlled digital voice and data switching, and for interprocessor communications. The uses in switching and in interprocessor communications are completely integrated to allow for a simple general purpose architecture appropriate for the systems of the future.

The serial streams of the ST-BUS operate continuously at $2048 \mathrm{kbit} / \mathrm{s}$ and are arranged in 125 μ s wide frames which contain 32 -bit channels. ZARLINK manufactures a number of devices which interface to the ST-BUS; a key device being the ZL50000 chip.

The ZL50000 can switch data from channels on STBUS inputs to channels on ST-BUS outputs, and simultaneously allows its controlling microprocessor to read channels on ST-BUS inputs or write to channels on ST-BUS outputs (Message Mode). To the microprocessor, the ZL50000 looks like a memory peripheral. The microprocessor can write to the ZL50000 to establish switched connections between input ST-BUS channels and output ST-BUS channels, or to transmit messages on output STBUS channels. By reading from the ZL50000, the microprocessor can receive messages from ST-BUS input channels or check which switched connections have already been established.

By integrating both switching and interprocessor communications, the ZL50000 allows systems to use distributed processing and to switch voice or data in an ST-BUS architecture.

Hardware Description

Serial data at 2048 kbit/s is received at the eight STBUS inputs (STiO to STi7), and serial data is transmitted at the eight ST-BUS outputs (SToO to STo7). Each serial input accepts 32 channels of digital data, each channel containing an 8-bit word which may represent a PCM-encoded analog/voice sample as provided by a codec (e.g., ZARLINK's MT8964).

This serial input word is converted into parallel data and stored in the 256×8 Data Memory. Locations in the Data Memory are associated with particular channels on particular ST-BUS input streams. These locations can be read by the microprocessor which controls the chip.

Locations in the Connection Memory, which is split into high and low parts, are associated with particular ST-BUS output streams. When a channel is due to be transmitted on an ST-BUS output, the data for the channel can either be switched from an ST-BUS input or it can originate from the microprocessor. If the data is switched from an input, then the contents of the Connection Memory Low location associated with the output channel is used to address the Data Memory. This Data Memory address corresponds to the channel on the input ST-BUS stream on which the data for switching arrived. If the data for the output channel originates from the microprocessor (Message Mode), then the contents of the Connection Memory Low location associated with the output channel are output directly, and this data is output repetitively on the channel once every frame until the microprocessor intervenes.

The Connection Memory data is received, via the Control Interface, at D7 to D0. The Control Interface also receives address information at A5 to A0 and handles the microprocessor control signals $\overline{\mathrm{CS}}, \overline{\mathrm{DTA}}$, $\mathrm{R} / \overline{\mathrm{W}}$ and DS. There are two parts to any address in the Data Memory or Connection Memory.

A5	A4	A3	A2	A1	A0	HEX ADDRESS	LOCATION
0	X	X	X	X	X	$00-1 \mathrm{~F}$	Control Register $^{\text {* }}$
1	0	0	0	0	0	20	${\text { Channel } 0^{\dagger}}^{\dagger}$
1	0	0	0	0	1	21	Channel 1^{\dagger}
\cdot							
\cdot							
1	1	1	1	1	1	3 F	${\text { Channel } 31^{\dagger}}^{4}$

[^0]Figure 3 - Address Memory Map

The higher order bits come from the Control Register, which may be written to or read from via the Control Interface. The lower order bits come from the address lines directly.

The Control Register also allows the chip to broadcast messages on all ST-BUS outputs (i.e., to put every channel into Message Mode), or to split the memory so that reads are from the Data Memory and writes are to the Connection Memory Low. The Connection Memory High determines whether individual output channels are in Message Mode, and allows individual output channels to go into a high-impedance state, which enables arrays of ZL50000s to be constructed. It also controls the CSTo pin.

All ST-BUS timing is derived from the two signals $\overline{\mathrm{C} 4 \mathrm{i}}$ and $\overline{\mathrm{F} 0} \mathrm{i}$.

Software Control

The address lines on the Control Interface give access to the Control Register directly or, depending on the contents of the Control Register, to the High or Low sections of the Connection Memory or to the Data Memory.

If address line A5 is low, then the Control Register is addressed regardless of the other address lines (see Fig. 3). If A5 is high, then the address lines A4-A0 select the memory location corresponding to channel 0-31 for the memory and stream selected in the Control Register.

The data in the Control Register consists of mode control bits, memory select bits, and stream address bits (see Fig. 4). The memory select bits allow the Connection Memory High or Low or the Data Memory to be chosen, and the stream address bits define one of the ST-BUS input or output streams.

Bit 7 of the Control Register allows split memory operation - reads are from the Data Memory and writes are to the Connection Memory Low.

The other mode control bit, bit 6, puts every output channel on every output stream into active Message Mode; i.e., the contents of the Connection Memory Low are output on the ST-BUS output streams once every frame unless the ODE pin is low. In this mode the chip behaves as if bits 2 and 0 of every Connection Memory High location were 1, regardless of the actual values.

Figure 4 - Control Register Bits

BIT	NAME	DESCRIPTION
$\mathbf{2}$	Message Channel	When 1, the contents of the corresponding location in Connection Memory Low are output on the location's channel and stream. When 0, the contents of the corresponding location in Connection Memory Low act as an address for the Data Memory and so determine the source of the connection to the location's channel and stream.
$\mathbf{1}$	CSTo Bit	This bit is output on the CSTo pin one channel early. The CSTo bit for stream 0 is output first.
$\mathbf{0}$	Output Enable	If the ODE pin is high and bit 6 of the Control Register is 0, then this bit enables the output driver for the location's channel and stream. This allows individual channels on individual streams to be made high-impedance, allowing switching matrices to be constructed. A 1 enables the driver and a 0 disables it.

Figure 5 - Connection Memory High Bits

*If bit 2 of the corresponding Connection High location is 1 or if bit 6 of the Control Register is 1 , then these entire 8 bits are output on the channel and stream associated with this location. Otherwise, the bits are used as indicated to define the source of the connection which is output on the channel and stream associated with this location.

Figure 6 - Connection Memory Low Bits

If bit 6 of the Control Register is 0 , then bits 2 and 0 of each Connection Memory High location function normally (see Fig. 5). If bit 2 is 1 , the associated STBUS output channel is in Message Mode; i.e., the byte in the corresponding Connection Memory Low location is transmitted on the stream at that channel. Otherwise, one of the bytes received on the serial inputs is transmitted and the contents of the Connection Memory Low define the ST-BUS input stream and channel where the byte is to be found (see Fig. 6).

If the ODE pin is low, then all serial outputs are highimpedance. If it is high and bit 6 in the Control Register is 1 , then all outputs are active. If the ODE pin is high and bit 6 in the Control Register is 0 , then the bit 0 in the Connection Memory High location enables the output drivers for the corresponding individual ST-BUS output stream and channel. Bit $0=1$ enables the driver and bit $0=0$ disables it (see Fig. 5).

Bit 1 of each Connection Memory High location (see Fig. 5) is output on the CSTo pin once every frame. To allow for delay in any external control circuitry the bit is output one channel before the corresponding channel on the ST-BUS streams, and the bit for stream 0 is output first in the channel; e.g., bit 1's for channel 9 of streams 0-7 are output synchronously with ST-BUS channel 8 bits 7-0.

Absolute Maximum Ratings*

	Parameter	Symbol	Min	Max	Units
1	$\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$		-0.3	7	V
2	Voltage on Digital Inputs	V_{I}	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
3	Voltage on Digital Outputs	V_{O}	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
4	Current at Digital Outputs	I_{O}		40	mA
5	Storage Temperature	T_{S}	-65	+150	${ }^{\circ} \mathrm{C}$
6	Package Power Dissipation	P_{D}		2	W

* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions - Voltages are with respect to ground $\left(V_{\text {Ss }}\right)$ unless otherwise stated.

	Characteristics	Sym	Min	Typ ‡	Max	Units	Test Conditions
1	Operating Temperature	T_{OP}	-40		+85	${ }^{\circ} \mathrm{C}$	
2	Positive Supply	V_{DD}	4.75		5.25	V	
3	Input Voltage	V_{1}	0		$\mathrm{~V}_{\mathrm{DD}}$	V	

\ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only: not guaranteed and not subject to production testing.
DC Electrical Characteristics - Voltages are with respect to ground $\left(V_{s s}\right)$ unless otherwise stated.

		Characteristics	Sym	Min	Typ ${ }^{\ddagger}$			
1	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~N} \\ & \mathrm{P} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{~S} \end{aligned}$	Supply Current	I_{DD}		6	10	mA	Outputs unloaded
2		Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.0			V	
3		Input Low Voltage	$\mathrm{V}_{\text {IL }}$			0.8	V	
4		Input Leakage	IIL		5		$\mu \mathrm{A}$	V_{1} between $V_{S S}$ and $V_{D D}$
5		Input Pin Capacitance	C_{1}		8		pF	
6	$\begin{aligned} & \mathrm{O} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{P} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{~S} \end{aligned}$	Output High Voltage	V_{OH}	2.4			V	$\mathrm{IOH}=10 \mathrm{~mA}$
7		Output High Current	I_{OH}		15		mA	Sourcing. $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
8		Output Low Voltage	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$
9		Output Low Current	I_{OL}		10		mA	Sinking. $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$
10		High Impedance Leakage	$\mathrm{I}_{\text {Oz }}$			5	$\mu \mathrm{A}$	V_{O} between $\mathrm{V}_{S S}$ and V_{DD}
11		Output Pin Capacitance	C_{0}		8		pF	

\ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only: not guaranteed and not subject to production testing.

[^1]Figure 7 - Output Test Load

AC Electrical Characteristics ${ }^{\dagger}$ - Clock Timing (Figures 8 and 9)

		Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Test Conditions
1	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~N} \\ & \mathrm{P} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{~S} \end{aligned}$	Clock Period*	$\mathrm{t}_{\text {CLK }}$	220	244	300	ns	
2		Clock Width High	t_{CH}	95	122	150	ns	
3		Clock Width Low	t_{CL}	110	122	150	ns	
4		Clock Transition Time	$\mathrm{t}_{\text {CTT }}$		20		ns	
5		Frame Pulse Setup Time	$\mathrm{t}_{\text {FPS }}$		20		ns	
6		Frame Pulse Hold Time	$\mathrm{t}_{\text {FPH }}$		20		ns	
7		Frame Pulse Width	$\mathrm{t}_{\text {fPW }}$		244		ns	

\dagger Timing is over recommended temperature \& power supply voltages.
\ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only: not guaranteed and not subject to production testing.

* Contents of Connection Memory are not lost if the clock stops, however, ST-BUS outputs go into the high impedance state.

NB: Frame Pulse is repeated every 512 cycles of $\overline{\mathrm{C} 4 \mathrm{i}}$.

Figure 8 - Frame Alignment

Figure 9 - Clock Timing

AC Electrical Characteristics ${ }^{\dagger}$ - Serial Streams (Figures 7, 10, 11 and 12)

		Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Test Conditions
1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{P} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{~S} \end{aligned}$	STo0/7 Delay - Active to High Z	$\mathrm{t}_{\text {SAZ }}$		50		ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{*}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
2		STo0/7 Delay - High Z to Active	$t_{\text {szA }}$		60		ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
3		STo0/7 Delay - Active to Active	$\mathrm{t}_{\text {SAA }}$		65		ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
4		STo0/7 Hold Time	$\mathrm{t}_{\text {SOH }}$		45		ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
5		Output Driver Enable Delay	$\mathrm{t}_{\text {OED }}$		45		ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{*}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
6		External Control Hold Time	$\mathrm{t}_{\mathrm{XCH}}$		50		ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
7		External Control Delay	$t_{\text {XCD }}$		75		ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
8	I	Serial Input Setup Time	$\mathrm{t}_{\text {SIS }}$		-40		ns	
9	N	Serial Input Hold Time	$\mathrm{t}_{\text {SIH }}$		40		ns	

\dagger Timing is over recommended temperature \& power supply voltages.
\ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only: not guaranteed and not subject to production testing.

* High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 10 - Serial Outputs and External Control

Figure 11 - Output Driver Enable

Figure 12 - Serial Inputs

AC Electrical Characteristics ${ }^{\dagger}$ - Processor Bus (Figures 7 and 13)

	Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Test Conditions
1	Chip Select Setup Time	$\mathrm{t}_{\mathrm{css}}$	20	0		ns	
2	Read/Write Setup Time	$\mathrm{t}_{\text {RWS }}$	25	5		ns	
3	Address Setup Time	$\mathrm{t}_{\text {ADS }}$	25	5		ns	
4	Acknowledgement Delay Fast Slow	$\mathrm{t}_{\text {AKD }}$		40	100	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
		$\mathrm{t}_{\text {AKD }}$	2.7		7.2	cycles	$\overline{\mathrm{C} 4 \mathrm{i}}$ cycles**
5	Fast Write Data Setup Time	$\mathrm{t}_{\text {FWS }}$	20			ns	
6	Slow Write Data Delay	$\mathrm{t}_{\text {swD }}$		2.0	1.7	cycles	$\overline{\mathrm{C} 4 \mathrm{i}}$ cycles**
7	Read Data Setup Time	$\mathrm{t}_{\text {RDS }}$			0.5	cycles	$\overline{\mathrm{C} 4 \mathrm{i}}$ cycles**, $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
8	Data Hold Time	$\mathrm{t}_{\mathrm{DHT}}$	20			ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{*}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
		$\mathrm{t}_{\mathrm{DHT}}$	20	10		ns	
9	Read Data To High Impedance	$\mathrm{t}_{\text {RDZ }}$		50	90	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{*}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
10	Chip Select Hold Time	$\mathrm{t}_{\text {CSH }}$	0			ns	
11	Read/Write Hold Time	$\mathrm{t}_{\text {RWH }}$	0			ns	
12	Address Hold Time	$\mathrm{t}_{\text {ADH }}$	0			ns	
13	Acknowledgement Hold Time	$\mathrm{t}_{\text {AKH }}$	10	60	80	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{*}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$

\dagger Timing is over recommended temperature \& power supply voltages.
\ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only: not guaranteed and not subject to production testing.
${ }_{* *}^{*}$ High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.
** Processor accesses are dependent on the $\overline{\mathrm{C} 4 \mathrm{i}}$ clock, and so some timings are expressed as multiples of the $\overline{\mathrm{C} 4 \mathrm{i}}$ clock period.

Figure 13 - Processor Bus

Package Outlines

Notes:

1) Not to scale
2) Dimensions in inches
3) (Dimensions in millimeters)
4) For D \& E add for allowable Mold Protrusion 0.010"

Dim	20-Pin		28-Pin		44-Pin		68-Pin		84-Pin	
	Min	Max								
A	$\begin{aligned} & 0.165 \\ & (4.20) \end{aligned}$	$\begin{aligned} & 0.180 \\ & (4.57) \end{aligned}$	$\begin{aligned} & 0.165 \\ & (4.20) \end{aligned}$	$\begin{aligned} & 0.180 \\ & (4.57) \end{aligned}$	$\begin{aligned} & 0.165 \\ & (4.20) \end{aligned}$	$\begin{aligned} & 0.180 \\ & (4.57) \end{aligned}$	$\begin{aligned} & 0.165 \\ & (4.20) \end{aligned}$	$\begin{aligned} & 0.200 \\ & (5.08) \end{aligned}$	$\begin{aligned} & 0.165 \\ & (4.20) \end{aligned}$	$\begin{aligned} & 0.200 \\ & (5.08) \end{aligned}$
A_{1}	$\begin{aligned} & 0.090 \\ & (2.29) \end{aligned}$	$\begin{aligned} & 0.120 \\ & (3.04) \end{aligned}$	$\begin{aligned} & 0.090 \\ & (2.29) \end{aligned}$	$\begin{aligned} & 0.120 \\ & (3.04) \end{aligned}$	$\begin{aligned} & 0.090 \\ & (2.29) \end{aligned}$	$\begin{aligned} & 0.120 \\ & (3.04) \end{aligned}$	$\begin{aligned} & 0.090 \\ & (2.29) \end{aligned}$	$\begin{aligned} & 0.130 \\ & (3.30) \end{aligned}$	$\begin{aligned} & 0.090 \\ & (2.29) \end{aligned}$	$\begin{aligned} & 0.130 \\ & (3.30) \end{aligned}$
D/E	$\begin{aligned} & 0.385 \\ & (9.78) \end{aligned}$	$\begin{gathered} 0.395 \\ (10.03) \end{gathered}$	$\begin{gathered} 0.485 \\ (12.32) \end{gathered}$	$\begin{gathered} 0.495 \\ (12.57) \end{gathered}$	$\begin{gathered} 0.685 \\ (17.40) \end{gathered}$	$\begin{gathered} 0.695 \\ (17.65) \end{gathered}$	$\begin{gathered} 0.985 \\ (25.02) \end{gathered}$	$\begin{gathered} 0.995 \\ (25.27) \end{gathered}$	$\begin{gathered} \hline 1.185 \\ (30.10) \end{gathered}$	$\begin{gathered} 1.195 \\ (30.35) \end{gathered}$
$\mathrm{D}_{1} / \mathrm{E}_{1}$	$\begin{gathered} \hline 0.350 \\ (8.890) \end{gathered}$	$\begin{gathered} \hline 0.356 \\ (9.042) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.450 \\ (11.430) \end{array}$	$\begin{array}{c\|} \hline 0.456 \\ (11.582) \end{array}$	$\begin{array}{\|c\|} \hline 0.650 \\ (16.510) \end{array}$	$\begin{array}{c\|} \hline 0.656 \\ (16.662) \end{array}$	$\begin{array}{\|c\|} \hline 0.950 \\ (24.130) \end{array}$	$\begin{gathered} 0.958 \\ (24.333) \end{gathered}$	$\begin{array}{c\|} \hline 1.150 \\ (29.210) \end{array}$	$\begin{gathered} 1.158 \\ (29.413) \end{gathered}$
$\mathrm{D}_{2} / \mathrm{E}_{2}$	$\begin{aligned} & 0.290 \\ & (7.37) \end{aligned}$	$\begin{aligned} & 0.330 \\ & (8.38) \end{aligned}$	$\begin{aligned} & 0.390 \\ & (9.91) \end{aligned}$	$\begin{gathered} 0.430 \\ (10.92) \end{gathered}$	$\begin{gathered} 0.590 \\ (14.99) \end{gathered}$	$\begin{gathered} 0.630 \\ (16.00) \end{gathered}$	$\begin{gathered} \hline 0.890 \\ (22.61) \end{gathered}$	$\begin{gathered} 0.930 \\ (23.62) \end{gathered}$	$\begin{gathered} 1.090 \\ (27.69) \end{gathered}$	$\begin{gathered} 1.130 \\ (28.70) \end{gathered}$
e	0	0.004	0	0.004	0	0.004	0	0.004	0	0.004
F	$\begin{gathered} 0.026 \\ (0.661) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.812) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.661) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.812) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.661) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.812) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.661) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.812) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.661) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.812) \end{gathered}$
G	$\begin{gathered} 0.013 \\ (0.331) \end{gathered}$	$\begin{gathered} 0.021 \\ (0.533) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.331) \end{gathered}$	$\begin{gathered} \hline 0.021 \\ (0.533) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.331) \end{gathered}$	$\begin{gathered} \hline 0.021 \\ (0.533) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.331) \end{gathered}$	$\begin{gathered} 0.021 \\ (0.533) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.331) \end{gathered}$	$\begin{gathered} 0.021 \\ (0.533) \end{gathered}$
H	$\begin{aligned} & 0.050 \mathrm{BSC} \\ & \text { (1.27 BSC) } \end{aligned}$		$\begin{aligned} & 0.050 \mathrm{BSC} \\ & \text { (1.27 BSC) } \end{aligned}$		$\begin{aligned} & 0.050 \mathrm{BSC} \\ & \text { (1.27 BSC) } \end{aligned}$		$\begin{aligned} & 0.050 \mathrm{BSC} \\ & \text { (1.27 BSC) } \end{aligned}$		$\begin{aligned} & 0.050 \mathrm{BSC} \\ & \text { (1.27 BSC) } \end{aligned}$	
I	$\begin{aligned} & 0.020 \\ & (0.51) \end{aligned}$		$\begin{aligned} & 0.020 \\ & (0.51) \end{aligned}$		$\begin{aligned} & 0.020 \\ & (0.51) \end{aligned}$		$\begin{aligned} & 0.020 \\ & (0.51) \end{aligned}$		$\begin{aligned} & 0.020 \\ & (0.51) \end{aligned}$	

Notes:

1) Not to scale
2) Dimensions in inches
3) (Dimensions in millimeters)

Plastic Dual-In-Line Packages (PDIP) - E Suffix

DIM	8-Pin		16-Pin		18-Pin		20-Pin	
	Plastic		Plastic		Plastic		Plastic	
	Min	Max	Min	Max	Min	Max	Min	Max
A		0.210 (5.33)		0.210 (5.33)		0.210 (5.33)		0.210 (5.33)
A_{2}	0.115 (2.92)	0.195 (4.95)	0.115 (2.92)	0.195 (4.95)	0.115 (2.92)	0.195 (4.95)	0.115 (2.92)	0.195 (4.95)
b	0.014 (0.356)	0.022 (0.558)	0.014 (0.356)	0.022 (0.558)	0.014 (0.356)	0.022 (0.558)	0.014 (0.356)	0.022 (0.558)
b_{2}	0.045 (1.14)	0.070 (1.77)	0.045 (1.14)	0.070 (1.77)	0.045 (1.14)	0.070 (1.77)	0.045 (1.14)	0.070 (1.77)
C	$\begin{gathered} 0.008 \\ (0.203) \end{gathered}$	0.014 (0.356)	0.008 (0.203)	$0.014(0.356)$	0.008 (0.203)	0.014 (0.356)	0.008 (0.203)	0.014 (0.356)
D	0.355 (9.02)	0.400 (10.16)	0.780 (19.81)	0.800 (20.32)	0.880 (22.35)	0.920 (23.37)	0.980 (24.89)	1.060 (26.9)
D_{1}	0.005 (0.13)		0.005 (0.13)		0.005 (0.13)		0.005 (0.13)	
E	0.300 (7.62)	0.325 (8.26)	0.300 (7.62)	0.325 (8.26)	0.300 (7.62)	0.325 (8.26)	0.300 (7.62)	0.325 (8.26)
E_{1}	0.240 (6.10)	0.280 (7.11)	0.240 (6.10)	0.280 (7.11)	0.240 (6.10)	0.280 (7.11)	0.240 (6.10)	0.280 (7.11)
e	0.100 BSC (2.54)		0.100 BSC (2.54)		$0.100 \mathrm{BSC}(2.54)$		0.100 BSC (2.54)	
$\mathbf{e f}_{\text {A }}$	0.300 BSC (7.62)		0.300 BSC (7.62)		$0.300 \mathrm{BSC}(7.62)$		0.300 BSC (7.62)	
L	0.115 (2.92)	0.150 (3.81)	0.115 (2.92)	0.150 (3.81)	0.115 (2.92)	0.150 (3.81)	0.115 (2.92)	0.150 (3.81)
e_{B}		0.430 (10.92)		0.430 (10.92)		0.430 (10.92)		0.430 (10.92)
e_{C}	0	0.060 (1.52)	0	0.060 (1.52)	0	0.060 (1.52)	0	0.060 (1.52)

NOTE: Controlling dimensions in parenthesis () are in millimeters.

Plastic Dual-In-Line Packages (PDIP) - E Suffix

DIM	22-Pin		24-Pin		28-Pin		40-Pin	
	Plastic		Plastic		Plastic		Plastic	
	Min	Max	Min	Max	Min	Max	Min	Max
A		0.210 (5.33)		0.250 (6.35)		0.250 (6.35)		0.250 (6.35)
A_{2}	0.125 (3.18)	0.195 (4.95)	0.125 (3.18)	0.195 (4.95)	0.125 (3.18)	0.195 (4.95)	0.125 (3.18)	0.195 (4.95)
b	0.014 (0.356)	0.022 (0.558)	0.014 (0.356)	0.022 (0.558)	0.014 (0.356)	0.022 (0.558)	0.014 (0.356)	0.022 (0.558)
b_{2}	0.045 (1.15)	0.070 (1.77)	0.030 (0.77)	0.070 (1.77)	0.030 (0.77)	0.070 (1.77)	0.030 (0.77)	0.070 (1.77)
C	0.008 (0.204)	0.015 (0.381)	0.008 (0.204)	0.015 (0.381)	0.008 (0.204)	0.015 (0.381)	0.008 (0.204)	0.015 (0.381)
D	1.050 (26.67)	1.120 (28.44)	1.150 (29.3)	1.290 (32.7)	1.380 (35.1)	1.565 (39.7)	1.980 (50.3)	2.095 (53.2)
D_{1}	0.005 (0.13)		0.005 (0.13)		0.005 (0.13)		0.005 (0.13)	
E	0.390 (9.91)	0.430 (10.92)	0.600 (15.24)	0.670 (17.02)	0.600 (15.24)	0.670 (17.02)	0.600 (15.24)	0.670 (17.02)
E			0.290 (7.37)	. 330 (8.38)				
E_{1}	0.330 (8.39)	0.380 (9.65)	0.485 (12.32)	0.580 (14.73)	0.485 (12.32)	0.580 (14.73)	0.485 (12.32)	0.580 (14.73)
E_{1}			0.246 (6.25)	0.254 (6.45)				
e	0.100 BSC (2.54)							
$\mathbf{e}_{\text {A }}$	0.400 BSC (10.16)		0.600 BSC (15.24)		0.600 BSC (15.24)		0.600 BSC (15.24)	
$\mathbf{e f}_{\text {A }}$			0.300 BSC (7.62)					
e_{B}				0.430 (10.92)				
L	0.115 (2.93)	0.160 (4.06)	0.115 (2.93)	0.200 (5.08)	0.115 (2.93)	0.200 (5.08)	0.115 (2.93)	0.200 (5.08)
α		15°		15°		15°		15°

[^2]
For more information about all Zarlink products visit our Web Site at

 www.zarlink.comInformation relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's $I^{2} \mathrm{C}$ components conveys a licence under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent rights to use these components in and $\mathrm{I}^{2} \mathrm{C}$ System, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.

[^0]: *Writing to the Control Register is the only fast transaction.
 \dagger Memory and stream are specified by the contents of the Control Register.

[^1]: S1 is open circuit except when testing output levels or high impedance states.
 S2 is switched to V_{DD} or $V_{\text {ss }}$ when testing output levels or high impedance states.

[^2]: \square

