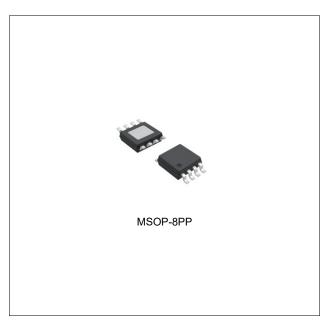
FEATURES


- Very High Maximum Input Voltage 100V
- Output Voltage Tolerances of ±1.5%
- · Output Current of 50mA
- Low Quiescent Current 23uA
- Quiescent Current at Shutdown 8µA
- Internal Thermal Overload Protection
- · Internal Short-Circuit Current Limit
- Adjustable Output Voltage from 1.2 to 90V

APPLICATIONS

- Microprocessors, Microcontrollers Powered by Industrial Busses with High Voltage Transients
- Industrial Automation
- · Telecom Infrastructure
- Automotive
- Power over Ethernet (PoE)
- LED Lighting

DESCRIPTION

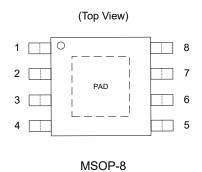
The TPS7A4001 device is a very high voltage-tolerant linear regulator that offers the benefits of a thermally-enhanced package (MSOP-8PP), and is able to withstand continuous DC or transient input voltages of up to 100V. The TPS7A4001 device has an internal thermal shutdown and current limiting to protect the system during fault conditions. In addition, this device is ideal for generating a low-voltage supply from intermediate voltage rails in telecom and industrial applications; not only can it supply a well-regulated voltage rail, but it can also withstand and maintain regulation during very high and fast voltage transients. These features translate to simpler and more cost-effective electrical surge-protection circuitry for a wide range of applications, including PoE, bias supply, and LED lighting.

ORDERING INFORMATION

Device	Package
TPS7A4001MDP	MSOP-8PP

ABSOLUTE MAXIMUM RATINGS (Note 1)

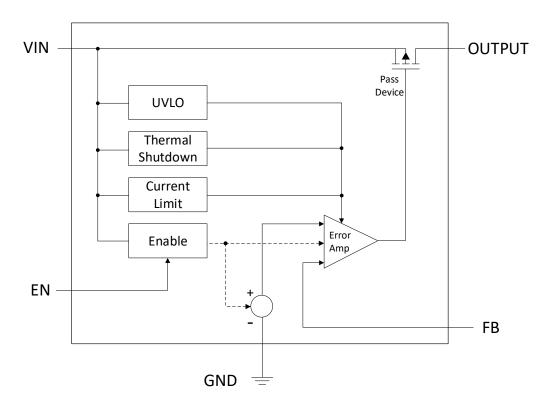
CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT
Input Supply Voltage	V _{IN}	-0.3	110	V
Enable Input Voltage	VEN	-0.3	110	V
Feedback Voltage	V _{FB}	-0.3	5.5	V
Storage Temperature Range	T _{STG}	-65	150	°C

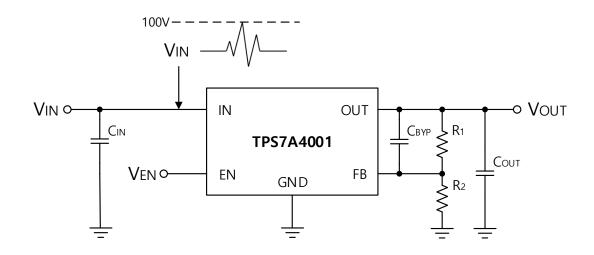

RECOMMENDED OPERATING RATINGS (Note 2)

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT
Input Voltage	Vin	7	100	V
Enable Input Voltage	V _{EN}	0	100	V
Output Voltage	Vouт	1.2	90	V
Maximum Output Current	I _{MAX}	-	50	mA
Operating Junction Temperature Range	T _{JOPR}	-40	125	°C

ORDERING INFORMATION

Package	Order No.	Description	Supplied As	Status
MSOP-8PP	TPS7A4001MDP	100V, 50mA, Adjustable, Enable	Tape & Reel	Active


PIN CONFIGURATION


PIN DESCRIPTION

Pin No.	Pin Name	Pin Function
1	VOUT	Output Voltage.
2	FB	Feedback.
3, 6, 7	N.C	No connection.
4	GND	Ground.
5	EN	Chip Enable. Do Not Float.
8	VIN	Input Supply.
PAD	Thermal Exposed Pad	Connect to GND. Put a copper plane connected to this pin as a thermal relief.

BLOCK DIAGRAM

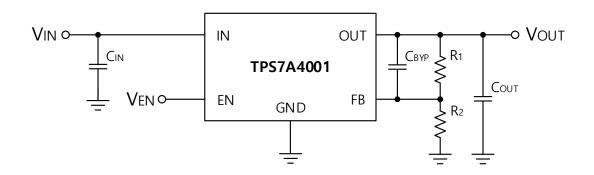
TYPICAL APPLICATION CIRCUIT

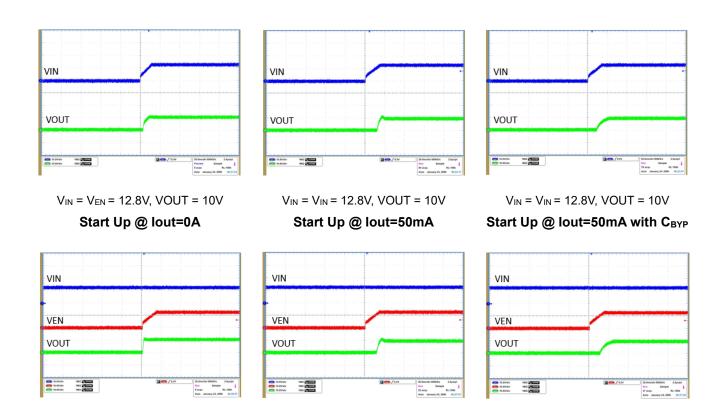
ELECTRICAL CHARACTERISTICS (Note 3)

Unless otherwise specified: $V_{IN} = V_{OUT(NOM)} + 3.0 \text{ V}$ or 7.0 V (whichever is greater), $I_{OUT} = 100 \text{ uA}$, $C_{IN} = 1.0 \text{ }\mu\text{F}$, $C_{OUT} = 4.7 \text{ }\mu\text{F}$, $T_{J} = 25^{\circ}\text{C}$

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Feedback Pin Voltage		V _{FB}		0.788	0.8	0.812	V
Line Regulation		ΔVLINE	7.0 V < V _{IN} < 100 V	-	3	20	mV
Load Regulation		ΔV _{LOAD}	100 uA < I _{OUT} < 50 mA	-	20	50	mV
Dropout Voltage		.,	I _{OUT} = 20 mA	-	1000	-	mV
		V _{DROP}	I _{OUT} = 50 mA	-	2800	-	
Quiescent Current		lα	I _{OUT} = 0 mA	-	20	40	μΑ
Shutdown Current		I _{SD}	V _{EN} = 0 V	-	8	15	μA
Current Limit		IcL	V _{OUT} = V _{OUT(NOM)} * 0.9	55	100	180	mA
Enable Pin Current		I _{EN}	7.0 V < V _{IN} < 100 V, V _{EN} = V _{IN}	-	0.02	1	μΑ
Feedback Pin Current		I _{FB}		-	0.01	0.11	μΑ
Enable threshold	Logic Low	VIL	Output = Low	0	-	0.4	V
	Logic High	VIH	Output = High	1.0	ı	VIN	V
Thermal Shutdown Temperature		Tsp	Shutdown, temperature increasing	-	145	-	°C
			Reset, temperature decreasing	-	125	-	°C

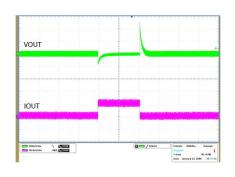
Note 1. Exceeding the absolute maximum ratings may damage the device.

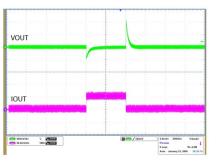

Note 2. The device is not guaranteed to function outside its operating ratings.

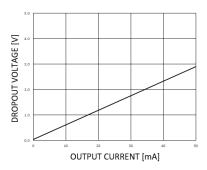

Note 3. Stresses listed as the absolute maximum ratings may cause permanent damage to the device. These are for stress ratings. Functional operating of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibly to affect device reliability.

TYPICAL OPERATING CHARACTERISTICS

TEST CIRCUIT


 V_{IN} = 12.8 V, V_{OUT} = 10 V, C_{IN} = 1.0 μ F, C_{OUT} = 4.7 μ F, T_J = 25°C





V_{IN} = 12.8V, V_{EN} = 12.8V, VOUT = 10V **Start Up @ lout=50mA**

 V_{IN} = 12.8V, V_{EN} = 12.8V, VOUT = 10V Start Up @ Iout=50mA with C_{BYP}

Load transient 0 to 50mA

Load transient 0 to 50mA with $C_{\mbox{\scriptsize BYP}}$

Dropout Voltage

REVISION NOTICE

The description in this datasheet is subject to change without any notice to describe its electrical characteristics properly.