MORNSUN®

QP12W05KS-37

Hybrid Integrated IGBT Driver

QP12W05KS-37 is a hybrid integrated IGBT driver designed for driving IGBT modules. This device is a fully isolated gate drive circuit consisting of an optimally isolated gate drive amplifier and an isolated DC-to-DC converter. The gate driver provides an over-current protection function based on desaturation detection and fault output.

RoHS

Features

- I Built in high CMRR opto-coupler (CMR: Typical: 30kV/µs, Min.:15kV/µs)
- I Single supply drive topology
- I Built in the isolated type DC/DC converter for gate drive
- I SIP package
- I CMOS&TTL compatible
- I Electrical isolation voltage between input and output is 3750VRMS (for 1 minute)
- I Built in short circuit protection circuit with a pin for fault output
- I Soft turn-off time is adjustable
- I The drive signal is ignored in the blocking time and the protection circuit reset at the end of it
- I Controlled time detect short circuit is adjustable
- I Switching frequency up to 20kHz

Application

- I General-purpose Inverter
- I AC Servo Systems
- I Uninterruptable Power Supplies(UPS)
- I Welding Machines

Recommended modules

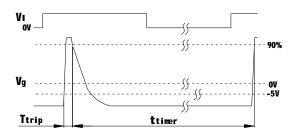
- I 600V Series IGBT(up to 600A)
- 1 1200V Series IGBT(up to 400A)
- I 1700V Series IGBT(up to 200A)

MORNSUN Science & Technology Co., Ltd.

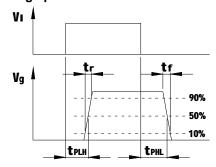
Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou,P.R.China.

Tel: 86-20-38601850 Fax: 86-20-38601272

Http://www.mornsun-power.com


Absolute Maximum Ratings					
Item		Test Conditions	Ratings	Units	
Supply Voltage	V _D	DC	16	V	
Input Current	lin	Between pin3 and pin4	25	mA	
Output Voltage	Vo	When the Output voltage "H" V _{CC}			
Output Current	I _{g on}	Pulse width 2µs	+5	А	
	I _{g off}	Frequency f=20kHz	-5	Α	
Isolation Voltage	V _{iso}	Sine wave voltage 50Hz/60 Hz,1 min.	3750	V	
Operation Temperature	T _{op}		-40 ~ +70	°C	
Storage Temperature	T _{st}		-50 ~ +125	°C	
Fault Output Current	1 _F	Pin5 input current	20	mA	
Input Voltage	VR	Applied pin13 50		V	
Notes: 1. Ta=25°C; V _D =15V, unless otherwise specified.					

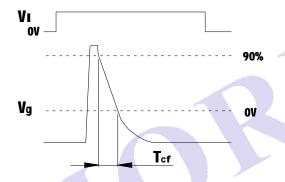
Electrical Characteristic						
Characteristics		Test Conditions	Limit			Units
		Test Conditions	Min	Тур.	Max	Uillis
Supply Voltage V _D		Recommended Range	14.5	15	15.5	V
"H" input current	I _{IH}	Recommended Range	10	16	20	mA
Switching frequency	f	Recommended Range	0		20	kHz
Gate resistant	R_g	Recommended Range	2			Ω
Gate supply voltage	Vc	V _D =15V	14.5		18.0	V
	VE	V _D =15V	-7		-10	V
"H" output voltage Vo		10KΩconnected between pin9-11	13.5	15.3	17.0	V
"L" output voltage	V _{OL}	10KΩconnected between pin9-11	-6		-10	V
"L-H" propagation delay time	t _{PLH}	I _{IH} =10mA		0.5	1	μs
"L-H" rise time	t _r	I _{IH} =10mA		0.3	1	μs
"H-L" propagation delay time	t _{PHL}	I _{IH} =10mA		1	1.3	μs
"H-L" fall time	t _f	I _{IH} =10mA		0.3	1	μs
Protection threshold voltage	V _{OCP}	V _D =15V		9.5		V
Protection reset time	t _{time}	Between start and cancel	1	1.4	2	ms
Fault output current	I _{FO}	Pin15 input current, R=4.7K		5		mA
Short-circuit detection time delay	T _{trip1}	Pin 13: ≥15V, Pin 16:open		1.6		μs
Soft turn-off time	T _{cf}	PIN 13≥15V, Pin 14:open		4.5		μs
SC detect voltage	Vs	Collector voltage of module	15			V
Notes: 1 Ta=25 °C: V ₂ =15V Rg=	-50 11	nless otherwise specified				


Notes: 1. Ta=25 °C, V_D =15V, Rg=5 Ω . unless otherwise specified 2."H" represents high level; "L" represents low level.

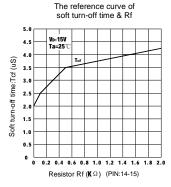
Definition of Characteristics

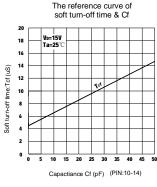
1) Operation of short circuit protection

2) Switching operation

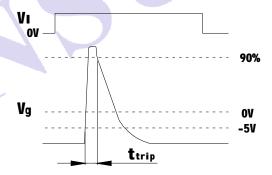


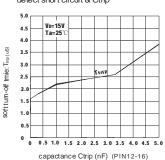
Definition of Adjustment


1) Adjustment of soft turn-off time:

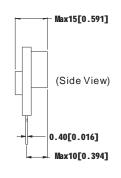

(Operation of short circuit protection)

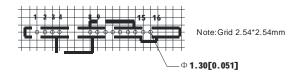
When a desaturation is detected the hybrid gate driver performs a soft shutdown of the IGBT. The Soft turn-off time is 4.5 μ S. You can connect an Rf or Cf to adjust the Soft turn-off time. (Connecting Rf will decrease the soft turn-off time and connecting Cf will increase the soft turn-off time.) The soft turn-off time must be set 2.5 μ S< T_{cf} <10 μ S. Please refer to the below table. (the data only for refer)


	The soft turn-off time & R _f ,C _f			
$R_f(\Omega)$	T _{cf} (µS)	C _f (nF)	T _{cf} (µS)	
-	4.5		4.5	
1500	4.0	1	4.9	
500	3.5	3.3	5.3	
300	3.0	10	6.5	
110	2.5	22	9.3	

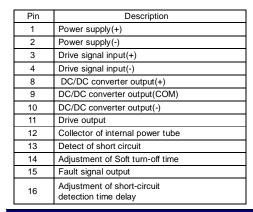

Adjustment of short-circuit detection time delay (Operation of short circuit protection)

The short-circuit detection time delay is defined between the time in which a desaturation is detected and the time in which the gate voltage fall down to 90% of extent. This diver have a minimum short-circuit detection time delay, and you can adjust the short-circuit detection time delay by connecting the capacitor (Ctrip) between PIN12 and 16. But the short-circuit detection time delay must be set less than 3.5µS. Please refer to below table.(the data only for refer)

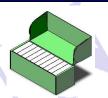

The short-circuit detection time delay & capacitor Ctrip				
Ctrip (nF)	Ttrip(µS)			
	1.6			
0.33	1.8			
1.0	2.2			
2.2	2.4			
3.3	2.6			


The reference curve of Controlled time detect short circuit & Ctrip

Outline Dimensions



Note: Unit: mm[inch]


Unit: mm[inch]
Pin seciton tolerances: ±0.10mm[±0.004inch]
General tolerances: ±0.30mm[±0.012inch]

Package diagram

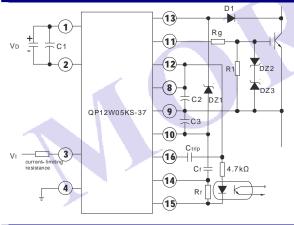
Pin Function

(small white box)

(inner packaging box)

Small white box dimensions: L*W*H=163*150*35mm

Packaging quantity: 10PCS


Inner packaging box dimensions: L*W*H=430*175*160mm

Packaging quantity: 100PCS

Outer packaging carton dimensions: L*W*H=560*450*520mm

Packaging quantity: 900PCS

Application Examples

 $V_D=15V$

 $V_i=5V\pm5\%$

C1:100µF (Low impedance)

C2:100µF(Low impedance)

C3:100 µ F (Low impedance)

Ctrip: Depend on need. Cf: Depend on need

Rf: Depend on need

 $Rg:5\Omega$ (Adjustable)

R1: 10KΩ 0.25W

DZ1:30V

DZ2, DZ3:18V

D1: Fast recovery diode (trr≤0.2µs)

Application Notes

- 1. The isolated DC/DC converter is only for the gate drive;
- 2. The IGBT gate-emitter drive loop wiring must be shorter than 1 meter;
- 3. The IGBT gate-emitter drive loop wiring should be use twisted-pair;
- 4. If large voltage spike is generated at the collector of the IGBT, the IGBT gate resistor should be increased;
- 5. The external C_f or R_f should be set as close as possible to the Hybrid IC, and the value can not exceed the recommended maximum;
- 6. The voltage compensate capacitors should be low impedance and be located as close as possible to the Hybrid IC;
- 7. The peak reverse voltage of the diode D1(to connect PIN13) must be higher than the peak value of the IGBT collector voltage;
- 8. When recovery current flow in D1, PIN13 is applied high voltage. In the case, counterplan for protection which insert a zener diode between PIN10 and 13 are necessary like above diagram(DZ1);
- 9. When the built in short-circuit protection circuit need not be used, please connect resistance of 4.7kΩ between PIN9 and 13(D1and DZ1are not required).
- 10. The input signal voltage must be less than 5.25V. The higher input signal voltage, the higher input signal current. It will result in more dissipation. The input port is a circuit composed of a high-speed optocoupler series with a 150ohm resistor. Practically, a current-limiting resistor is inserted, which value can be obtained according to the following equation:

 $R = \frac{Vin - 1.7V}{16mA} - 150ohm$