

RoHSCOMPLIANT

Product Spec Certification

Customer : Electronics Source Co., Ltd.

Description: Suppression capacitors - Class X2

Part No. and the Dimensions in Diagram 1:

	Editio Sales P/N	Surong's	Clients' Ra	D 4 1	Capaci tance			Dimensions (mm)					
NO	n	Sales 1/IV	Part No.	Part No	Volta ge	(μF)	Tolera	W	T	Н	P	L	d
							nce	±0.5	±0.5	±0.5	±0.5	min	±0.05
1	B/0	S08490150	MP2105K3E6G0	0552-0016-2	280VAC	1.0	K	26.0	12.0	21.5	22.5	14.0	0.8
Remarks													

<u>Draft by</u>	checked by	approved by	SURONG CAPACITORS
Xicao Dong	Yongchu Tan	Jianjun Li	2021-01-15

地址: 深圳市宝安区观澜街道富坑社区同富裕工业区 18号

ADRESS: No.18, Tongfuyu Industrial Area, Fukeng Community, Guanlan Street, Shenzhen City, China

TEL: 0755-28089799 28089768 28089586 FAX: 0755-28089777 28089366 28089866 Http://www.sr-cap.com E-mail:manager@sr-cap.com

Customers recognize:

<u>Tested by</u>	checked by	approved by	accept date

Note: 1. The client has read this acknowledgement and confirmed that it fully understands its meaning.

- 2. When this specification comes into effect, the old version will be canceled.
- 3. Pls sign back the first page of datasheet, otherwise the ERP system shouldn't work well.

客户盖章

The record of changes

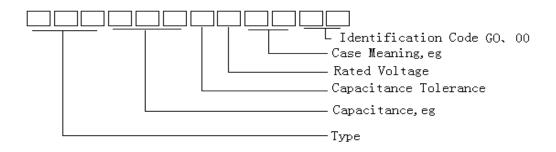
No.	Version	Content	Date of make/revision
1	B/0	Modify format mode, add version change record.	2021-01-15

MPX/MKP X2

1. Features and Using

1.1 Features

High voltage proof with good insulation properties. Have strong moisture resistance and well voltage proof.


1.2 Using:

Used in across-the-line, interference suppression circuit.

2. Reference Standard

GB/T2693 (IEC60384-1) 《Fixed Capacitors for use in electronic equipment Part 1:Generic Specification》; GB/T6346.14-2015 (IEC60384-14) 《Fixed Capacitors for use in electronic equipment Part 14:Section Specification: Fixed capacitors for electromagnetic interference suppression and connection to the supply mains》;

3.Part Number System

3.1 Digit 1 to 3 Series code

MP2 = MPX/MKPX2

3.2 Digit 4 to 6 Rated capacitance value(For example)

Code	102	103	104	105
μF	0.001	0.01	0.1	1.0

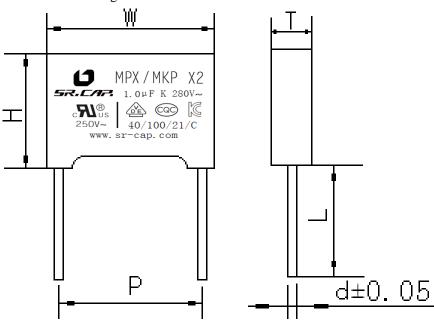
3. 3 Digit 7 Capacitance Tolerance

<u>U</u> 1		
Code	K	M
Capacitance	±10%	±20%
Tolerance	10%	<u> </u>

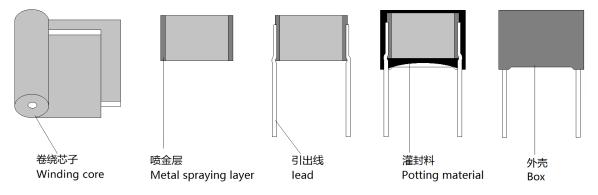
3.4 Digit 8 Rated Voltage

Code	G	3	Н
Rated	250	280	210
voltage(VAC)	250	280	310

3.5 Digit 9 to 10 The size of the case(For example)


Code	C2	C3	D2	D3	E1
W*T*H	13*5*11	13*6*12	18*5. 8*12	18*7. 5*13. 5	26. 2*6*15

3.6 Digit 11 to 12: Internal use



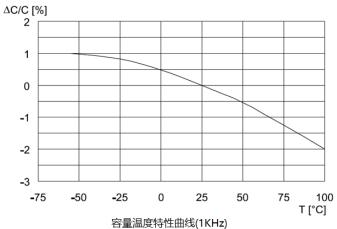
- 4.0 Capacitor outline drawing, structure drawing and Ingredients list
- 4.1 Outline Drawing:

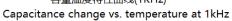
- 4.2 Structure drawing and Ingredients list:
 - 4.2.1 Structure drawing:

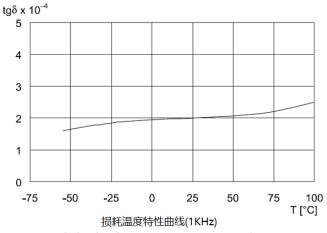
4.2.2 **Ingredients list:**

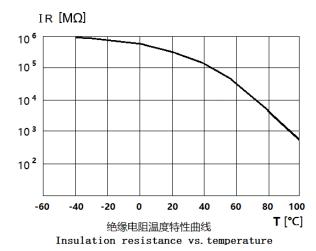
Product Name	Part	Name of raw material
	Winding core	Metallized polypropylene film
Interferon	Metal spraying layer	zinc wire and tin-zinc alloy
Suppression	Lead	Tin-coated copper-clad steel wire(Cp wire)
Capacitors, X2 Class	Potting material	Flame-retardant epoxy resin< UL94/V-0>
	Plastic shell	PBT Case (UL94/V+0)
		工程部

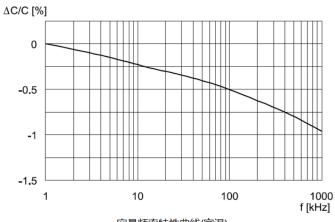
深圳塑镕电容器有限公司 SHENZHEN SURONG CAPACITORS CO., LTD.

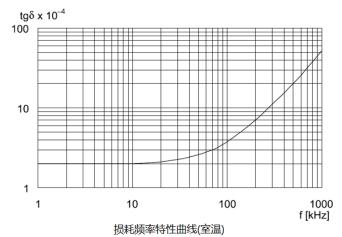

5. MPX/MKP X2 Safety Approvals:


Certificate Authority	UL	VDE	CQC	K	TL .
		40008924	CQC06001018191	Capacitance range	Certificate No.
				0. 0022-0. 1 μ F	SU03022-6001C
Certificate	E314875			0. 12-0. 33 μ F	SU03022-6002C
Number				0. 39-1. 0 μ F	SU03022-6003C
				1. 2-3. 0 μ F	SU03022-7001A
				3. 3-4. 7 µ F	SU03022-7002A


echnical	Requirements					
No.	Item		Performance			
6. 1	Climatic category/ flame-retardant grade	40/100/21/C	40/100/21/C			
6. 2	Operating Temperature Range	-40°C∼+100°C				
6. 3	Rated voltage UR	250VAC 、280VAC、310V	VAC			
6. 4	Maximum continuous DC voltage	630VDC				
6. 5	Capacitance Range	0.0010μF~4.7μF				
6. 6	Capacitance Tolerance	$J(\pm 5\%)$ K($\pm 10\%$) 1KHz, 1V				
	Dissipation Factor	$C_R < 0.01 \mu F$	tg δ ≤0.002(1KHz, 20°C)	tg δ ≤0.002(10KHz, 20°C)		
		0. 01 μ F≤C _R ≤0. 47μF	tg δ ≤0.001 (1KHz, 20°C)	tg δ ≤0.002 (10KHz,20°C)		
6. 7		0. 47 μ F <c<sub>R≤1. 0μF</c<sub>	tg δ ≤0.0020(1KHz, 20°C)	tgδ≤0.0040 (10KHz, 20°C)		
		$C_R > 1.0 \mu F$	tg δ ≤0.0030(1KHz, 20℃)	/		
6.8	Voltage Proof	Between Terminals is 4.3U _R V Between Terminals and Case	VDC 2S is 1500VAC+2URVAC (1min)			
6. 9	Insulation Resistance	$C_R \le 0.33 \mu\text{F}, \ge 30000$ $C_R > 0.33 \mu\text{F}, \ge 10000$	(20°C, 10	00V, 1min)		
6. 10	Soldering	Tin area should be more than 90%. (Solder groove method Ta,Method 1: Solder Temperature: 235±5°C; Immersion Time: 2.0±0.5S)				
6. 11	Mark	The content of marking should has trademark, product model rated voltage, rated capacitance and tolerance.				
6. 12	Appearance	No rag, bubble, pinhole Leads are with no seriou The marking must be con	s damaged.			


7. Typical Graphs





Dissipation factor vs. temperature at 1kHz

容量频率特性曲线(室温) Capacitance change vs. frequency (Room temperature)

Dissipation factor vs. frequency (Room temperature)

$8. \ \textbf{Testing Methods and Performance} \\$

NO.		Item	Performance	Testing Condition or Method
	N	Initial Ieasurement	Capacitance Loss pin tangent CR≤1 µF , Measured at 10KHZ CR>1 µF , Measured at 1KHZ	
8.1	Terminal strength		No significant defects	Tensile Test Ual: Tense: $0.50 < d \le 0.80$ mm; $10N$ $0.80 < d \le 1.25$ mm; $20N$ Bending Test Ub: Bend: $0.50 < d \le 0.80$ mm; $5N$ $0.80 < d \le 1.25$ mm; $10N$ The terminals shall be bent 2 times in each direction.
		lesistance to solder heat	No significant defects, clear signs	Solder groove method Tb,Method $1A,260\pm5^{\circ}C$, $10\pm1S$
	N	Final Ieasurement	No significant defects $\triangle C/C \le 5\%$ (relative to the initial value)	
	Initial Measurement		Capacitance Loss pin tangent CR≤1 µF , Measured at 10KHZ CR>1 µF , Measured at 1KHZ	
	Rapid change of temperature		No significant defects	T _A =-40°C, T _B =+100°C 5 cycles Duration:t=30min
8.2	Vibration		No significant defects	Amplitude 0.75 mm or acceleration 98m/s2 (whichever is the smaller severity),f:10Hz to 500Hz.Three directions,2h for each direction,total 6h.
	Bump		No significant defects	4000 times, Acceleration 390 m/s2 Pulse duration, 6ms
	Final Measurement		No significant defects $\triangle C/C \le 5\%$ (relative to the initial value) Loss pin tangent should be meet the requirement of 6.7.	
		Initial Measureme nt	Capacitance Loss pin tangent CR≤1 µ F , Measured at 10KHZ CR>1 µ F , Measured at 1KHZ	
		Dry heat Damp heat,		+100°C, 16h Test Db,Severity b, the first cycle
	Clima	Cyclic Cold		-40°C, 2h
8.3	ite Seg	Damp heat, Cyclic other	No significant defeate description	Test Db,Severity b, the other cycles
	Climate Sequence	Final Measureme nt	No significant defects, clear signs $\triangle C/C \leqslant 5\% \text{ (relative to the initial value)}$ Increase of tg δ : $CR \leqslant 1 \ \mu \ F \leqslant 0.008$ $CR > 1 \ \mu \ F \leqslant 0.005$ Voltage resistance: $4.3U_RVDC$ there shall be no permanent breakdown or flashover. $IR: \ \geqslant 50\% \ \text{of the rated value}$	工程部 **

8.4	Dam	Initial Measu rement	Capacitance Loss pin tangent CR≤1μF , Measured at 10KHZ CR>1μF , Measured at 1KHZ	Temperature: 40°C ±2°C	
	p heat stead y state Final Measu rement		No significant defects, clear signs	Humidity: 93±3%RH Duration: 21 days	
8.5	Initial Measurement		Capacitance Loss pin tangent CR≤1μF , Measured at 10KHZ CR>1μF , Measured at 1KHZ		
	8.5.1 Impulse voltage		There are three or more waveforms which indicate that no self-heating breakdown have occurred when it is monitored by the monitor.	① Impulse voltage 2.5KV ($CR \le 1 \mu F$), $2.5/\sqrt{C_R}$ KV ($CR > 1 \mu F$) ② Each individual capacitor shall be subjected to 24 impulses of the same polarity(when any three successive impulses are shown by the monitor to have form indicating that no self-healing breakdown have taken place the impulses can be stopped). ③ the time between impulses shall not be less than 10S.	
	8.5.2 Enduran ce	Fina 1 Mea sure men t	No significant defects, clear signs $\triangle C/C \leqslant 10\% \text{ (relative to the initial value)}$ Increase of tg δ : $CR \leqslant 1 \mu F \leqslant 0.008$ $CR > 1 \mu F \leqslant 0.005$ there shall be no permanent or flashover when $4.3U_RVDC$, $5s$. IR: $\geqslant 50\%$ of the rated value	+100°C, 1000h 1.25×UR Va.c The voltage shall be subjected to 1000Vrms for 0.1s every one hour during test.	
8.6	Chargin g and discharg ing	Initi al Mea sure men t	Capacitance Loss pin tangent CR≤1 µ F , Measured at 10KHZ CR>1 µ F , Measured at 1KHZ No significant defects, clear signs	Times: 10000 Duration of charging: 0.5S Duration of discharging: 0.5S Charging Voltage: $\sqrt{2}$ UR(VDC) Charging resistance: $220/C_R$ (Ω) Discharging resistance: $R = \frac{\sqrt{2} U_R}{100 C_R}$ (Ω) CR: Capacitance (μ F)	
		Fina l Mea sure men t	\triangle C/C \le 10% (relative to the initial value) Increase of tg δ : CR \le 1 μ F \le 0.008 CR>1 μ F \le 0.005 IR: \ge 50% of the rated value		

8.7	Passive flammability	The flaming time of each capacitor shall not go beyond 30s after it is taken apart from the flame. Drop of each capacitors caused by flame shall not fire the tissue below.	IEC695-2-2 Needle flame test The category of flammability:C Expose time:1 time, Capacitor Volume Exposing time $V (mm^3) \leqslant 250, 5s$ $250 < V (mm^3) \leqslant 500, 10s$ $500 < V (mm^3) \leqslant 1750, 20s$ $V (mm^3) > 1750, 30s$
8.8	Active flammability	The cheese cloth around the capacitor shall not burn with a flame.	The specimens shall be individually wrapped in at least 1,but not more than 2,complete layers of cheesecloth, the cheesecloth shall be untreated pure cotton cloth. Each sample shall be subjected to 20 discharged, the interval between successive discharge shall be 5s. Ui=2.5KV ₀ ⁺⁷ % UR±5% be applied and be maintained for 120, after last discharge. Unless blown the fuses and make the circuit opened.

9. Quality Assurance (delivery inspection)

the state of the s								
Inspection Item (Each	Inspection Level (GB/T2828.1,TS02859-1)							
Batch)	IL	AQL						
Appearance	TT	1. 5%						
Size	II							
Capacitance		0.1%						
Dissipation Factor	II							
Rated voltage								
IR								
Solder ability	S-3	2. 5%						

10.Package Transmit and Store Requirements

10.1The inner package and packing container should contain:

a.Part No. b.Supplier's Logo c.Type d.Capacitance e.Capacitance Tolerance f. Rated voltage g.The lot no or produce date h.Quantity i.OCQ Checker j.Packager Folder

10.2 Package Methods

Put every 100 pieces or whole number times of 100 pieces in the plastic bag with a "QA PASS" certification in. Then put them into the cardboard boxes. Or according to the requirements of customers, such as taping etc.

10.3Transport requirements

The cardboard boxes could be transit by any way under the condition of avoiding the rain and snow and hard machines' damage.

10.4 Storage Conditions and Time Limit

Storage Conditions: No more than 35°C, the RH is no more than 65%, no acid basis.

Time Limit: Please use up within 1 year or the leads will be oxygenate.

