

UTC UNISONIC TECHNOLOGIES CO., LTD

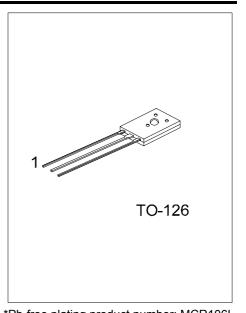
MCR106

REVERSE BLOCKING TRIODE THYRISTORS

DESCRIPTION

PNPN devices designed for high volume consumer applications such as temperature, light and speed control; process and remote warning systems where reliability of operation is control. and important.

FEATURES


www.unisonic.com.tw

Copyright © 2008 Unisonic Technologies Co., Ltd

- * Glass-passivated surface for reliability and uniformity
- * Power rated at economical prices
- * Practical level triggering and holding characteristics

ORDERING INFORMATION

* Flat, rugged, thermopad construction for low thermal resistance, high heat dissipation and durability

*Pb-free plating product number: MCR106L

Ordering Number		Deekege	Pin Assignment			Deaking	
Normal	Lead Free Plating	Package	1	2	3	Packing	
MCR106-6-T60-K	MCR106L-6-T60-K	TO-126	Κ	А	G	Bulk	
MCR106-8-T60-K	MCR106L-8-T60-K	TO-126	к	А	G	Bulk	

Note: Pin assignment: G: Gate K: Cathode A: Anode

MCR106L-6- <u>T60-K</u> (1) Packing Type	(1) K: Bulk
(2) Package Type	(2) T60: TO-126
(3) Lead Plating	(3) L: Lead Free Plating, Blank: Pb/Sn

PARAMETER	SYMBOL	RATINGS	UNIT	
Peak Repetitive Forward and Reverse Blocking		400	V	
Voltage (Note 1) (T _J =110 , R_{GK} =1k Ω) MCR106-8		V _{DRM} , V _{RRM}	600	V
RMS Forward Current (All conduction Angles)	I _{T(RMS)}	4	А	
Average Forward Current ($T_C=93$ or $T_A=30$)	I _{T(AV)}	2.55	А	
Peak Non-repetitive Surge Current (1/2 Cycle, 60Hz, T _J =-40 ~ +110)	I _{TSM}	25	A	
Circuit Fusing Considerations (t=8.3 ms)	l ² t	2.6	A ²	
Peak Gate Power	P _{GM}	0.5	W	
Average Gate Power	P _{G(AV)}	0.1	W	
Peak Forward Gate Current	I _{GM}	0.2	А	
Peak Reversed Gate Voltage	V _{RGM}	6	V	
Mounting Torque (Note 2)		6	In. lb.	
Operating Junction Temperature	TJ	-40 ~ +110		
Storage Temperature	T _{STG}	-40 ~ +150		

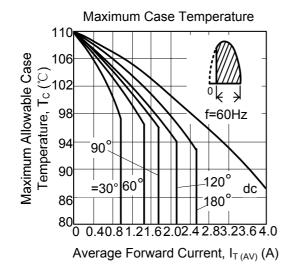
■ ABSOLUTE MAXIMUM RATINGS (T_J=25 , unless otherwise specified)

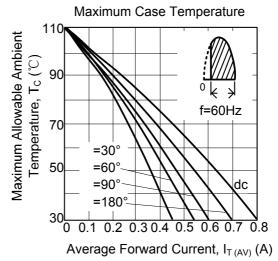
Note 1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage of the devices are exceeded.

- 2. Torque rating applies with use of compression washer (B52200-F006 or equivalent). Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Anode lead and heatsink contact pad are common. For soldering purposes (either terminal connection or device mounting), soldering temperatures shall not exceed +200°C. For optimum results, an activated flux (oxide removing) is recommended.
- 3. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Thermal Resistance, Junction to Ambient	θ_{JA}	75	/W
Thermal Resistance, Junction to Case	θ _{JC}	3	/W


■ ELECTRICAL CHARACTERISTICS (T_C=25 and R_{GK}=1000 Ω, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Peak Forward or Reverse Blocking	1	T_=25			10	μA
Current (V _{AK} =Rated V _{DRM} or V _{RRM})	I _{DRM} , I _{RRM}	T _J =100			200	μA
Forward "On" Voltage (I _{TM} =4A peak)	V _{TM}				2	V
Gate Trigger Current (continuous DC)		V _{AK} =7V, R _L =100Ω			200	
(Note)	IGT	V _{AK} =7V, R _L =100Ω, Tc=-40			500	μA
Gate Trigger Voltage (continuous DC)	V _{GT}	V _{AK} =7V, R _L =100Ω, Tc=25			1	V
Gate Non-Trigger Voltage	V_{GD}	V _{AK} =Rated V _{DRM} , R _L =100Ω, T _J =110	0.2			V
Holding Current	I _H	V _{AK} =7V, T _C =25			5	mA
Forward Voltage Application Rate	dv/dt	T _J =110		10		V/μs

Note: R_{GK} current is not included in measurement.

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

