8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89202 Series

MB89202/F202/V201

DESCRIPTION

The MB89202 series is a line of single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such, timers, a serial interface, an A/D converter and an external interrupt.

■ FEATURES

- F2 MC-8L family CPU core
- Maximum memory space : 64 Kbytes
- Minimum execution time : $0.32 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$
- Interrupt processing time : $2.88 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$
- I/O ports : Max 26 channels
- 21-bit time-base timer
- 8-bit PWM timer
- 8/16-bit capture timer/counter
- 10-bit A/D converter : 8 channels
- UART
- 8-bit serial I/O
- External interrupt 1:3 channels
- External interrupt 2 : 8 channels
-Wild Register : 2 bytes
(Continued)

PACKAGES

32-pin plastic SH-DIP
(DIP-32P-M06)
(FPT-34P-M03)

MB89202 Series

(Continued)

- MB89F202 : Flash (at least 10,000 program / erase cycles) with read protection
- Low-power consumption modes (sleep mode, and stop mode)
- SH-DIP-32, SSOP-34 package
- CMOS Technology

PRODUCT LINEUP

Part number		MB89202	MB89F202

(Continued)

Part number Parameter	MB89202	MB89F202	MB89V201
10-bit A/D converter	10-bit precision $\times 8$ channelsA/D conversion function (Conversion time $: 12.16 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$)Continuous activation by $8 / 16$-bit timer/counter output or time-base timer counter		
Wild Register	8 -bit $\times 2$		
Standby mode	Sleep mode, and Stop mode		
Overhead time from reset to the first instruction execution	Power-on reset : Oscillation stabillization wait*1 External reset : a few $\mu \mathrm{s}$ Software reset : a few $\mu \mathrm{s}$	Power-on reset : Voltage regulator and oscillation stabillization wait ($31.5 \mathrm{~ms} / 12.5 \mathrm{MHz}$) External reset : Oscillation stabillization wait ($21.0 \mathrm{~ms} / 12.5 \mathrm{MHz}$) Software reset : a few $\mu \mathrm{s}$	Power-on reset : Oscillation stabillization wait ($21.0 \mathrm{~ms} / 12.5 \mathrm{MHz}$) External reset : Oscillation stabillization wait ($21.0 \mathrm{~ms} / 12.5 \mathrm{MHz}$) Software reset : a few $\mu \mathrm{s}$
Power supply voltage*2	2.2 V to 5.5 V	3.5 V to 5.5 V	2.7 V to 5.5 V

*1 : Check section "■ MASK OPTIONS"
*2 : The minimum operating voltage varies with the operating frequency, the function, and the connected ICE. (The operating voltage of the A/D converter is assured separately. Check section "■ ELECTRICAL CHARACTERISTICS.")

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89202	MB89F202	MB89V201
DIP-32P-M06	\bigcirc	\bigcirc	\times
FPT-34P-M03	\bigcirc	\bigcirc	\times
FPT-64P-M03	\times	\times	\bigcirc

\bigcirc : Available $\quad x$: Not available

■ DIFFERENCES AMONG PRODUCTS

- Memory Size

Before evaluating using the evaluation product, verify its differences from the product that will actually be used.

- Mask Options

Functions that can be selected as options and how to designate these options vary by the product. Before using options check section "■ MASK OPTIONS".

MB89202 Series

PIN ASSIGNMENTS

(Continued)

*: Large-current drive type
N.C. : Internally connected. Do not use.
(FPT-34P-M03)

MB89202 Series

PIN DESCRIPTION

Pin No.		Pin name	Circuit type	Function
SH-DIP32*1	SSOP34*2			
8	8	X0	A	Pins for connecting the crystal for the main clock. To use an external clock, input the signal to X0 and leave X1 open.
9	9	X1		
5, 6	5, 6	P60, P61	H/E	General-purpose CMOS input port for MB89F202. General-puspose CMOS I/O port for MB89202/MB89V201.
7	7	$\overline{\mathrm{RST}}$	C	Reset I/O pin. This pin serves as an N-channel open-drain reset output with pull-up resistor (not available for MB89F202) and a reset input as well. The reset is a hysteresis input. It outputs the " L " signal in response to an internal reset request. Also, it initializes the internal circuit upon input of the " L " signal.
28 to 31	30 to 33	$\begin{aligned} & \hline \text { P00/INT20/ } \\ & \text { AN4 } \\ & \text { to P03/ } \\ & \text { INT23/AN7 } \end{aligned}$	G	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2 or as an 10-bit A/D converter analog input. The input of external interrupt 2 is a hysteresis input.
1 to 4	1 to 4	$\begin{gathered} \mathrm{P} 04 / \overline{\mathrm{INT} 24} \\ \text { to } \\ \mathrm{P} 07 / \overline{\mathrm{INT} 27} \end{gathered}$	D	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2. The input of external interrupt 2 is a hysteresis input.
19	20	$\begin{aligned} & \text { P30/UCK/ } \\ & \text { SCK } \end{aligned}$	B	General-purpose CMOS I/O ports. This pin also serves as the clock I/O pin for the UART or 8-bit serial I/O. The resource is a hysteresis input.
18	19	P31/UO/SO	E	General-purpose CMOS I/O ports. This pin also serves as the data output pin for the UART or 8-bit serial I/O.
17	18	P32/UI/SI	B	General-purpose CMOS I/O ports. This pin also serves as the data input pin for the UART or 8-bit serial I/O. The resource is a hysteresis input.
15	15	P33/EC	B	General-purpose CMOS I/O ports. This pin also serves as the external clock input pin for the 8/16-bit capture timer/counter. The resource is a hysteresis input.
14	14	P34/TO/ INT10	B	General-purpose CMOS I/O ports. This pin also serves as the output pin for the 8/16-bit capture timer/ counter or as the input pin for external interrupt 1 . The resource is a hysteresis input.
13, 12	13, 12	P35/INT11, P36/INT12	B	General-purpose CMOS I/O ports. These pins also serve as the input pin for external interrupt 1. The resource is a hysteresis input.
11	11	$\begin{gathered} \hline \text { P37/BZ/ } \\ \text { PPG } \end{gathered}$	E	General-purpose CMOS I/O ports. This pin also serves as the buzzer output pin or the 12-bit PPG output.
20	21	P50/PWM	E	General-purpose CMOS I/O ports. This pin also serves as the 8-bit PWM timer output pin.

(Continued)

MB89202 Series

(Continued)

Pin No.		Pin name	Circuit type	Function
SH-DIP32*	SSOP34*			
24 to 27	26 to 29	$\begin{gathered} \hline \text { P40/AN0 } \\ \text { to P43/ } \\ \text { AN3 } \end{gathered}$	F	General-purpose CMOS I/O ports. These pins can also be used as N -channel open-drain ports. These pins also serve as 10-bit A/D converter analog input pins.
21 to 23	23 to 25	P70 to P72	E	General-purpose CMOS I/O ports.
32	34	Vcc	-	Power supply pin
10	10	Vss	-	Power (GND) pin
16	17	C	-	MB89F202: Capacitance pin for regulating the power supply. Connect an external ceramic capacitor of about $0.1 \mu \mathrm{~F}$. MB89202: This pin is not internally connected. It is unnecessary to connect a capacitor.
-	16, 22	N.C.	-	Internally connected pins Be sure to leave it open.

[^0]
MB89202 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A	Standby control signal	- At an oscillation feedback resistance of approximately $500 \mathrm{k} \Omega$
B		- CMOS output - Hysteresis input - Pull-up resistor optional
C		- At an output pull-up resister (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ (not available for MB89F202) - N-ch open-drain reset output - Hysteresis input
D		- CMOS output - CMOS input - Hysteresis input (Resource input) - Pull-up resistor optional

(Continued)
(Continued)

Type	Circuit	Remarks
E		- CMOS output - CMOS input - Pull-up resistor optional - P70-P72 are large-current drive type
F		- CMOS output - CMOS input - Analog input - N-ch open-drain output available - P40-P43 are large-current drive type
G		- CMOS output - CMOS input - Hysteresis input (Resource input) - Analog input
H	\square Input enable -Port input	- CMOS input

MB89202 Series

■ HANDLING DEVICES

- Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ ELECTRICAL CHARACTERISTICS" is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

- Treatment of Unused Input Pins

Leaving unused input terminals open may lead to permanent damage due to malfunction and latchup; pull up or pull down the terminals through the resistors of $2 \mathrm{k} \Omega$ or more.

Make the unused I/O terminal in a state of output and leave it open or if it is in an input state, handle it with the same procedure as the input terminals.

- Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

- Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V_{cc} ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard V cc value at the commercial frequency (50 Hz to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

- Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

- About the Wild Register Function

No wild register can be debugged on the MB89V201. For the operation check, test the MB89F202 installed on a target system.

- Program Execution in RAM

When the MB89V201 is used, no program can be executed in RAM.

- Note to Noise in the External Reset Pin ($\overline{\mathrm{RST}}$)

If the reset pulse applied to the external reset pin ($\overline{\mathrm{RST}}$) does not meet the specifications, it may cause malfunctions. Use caution so that the reset pulse less than the specifications will not be fed to the external reset pin (RST).

- External pullup for the External Reset Pin ($\overline{\mathrm{RST}}$) of MB89F202

Internal pullup control for RST pin is not available for MB89F202. To ensure proper external reset control in MB89F202, an external pullup (recommend $100 \mathrm{k} \Omega$) for RST pin must be required.

MB89202 Series

(Continued)

- Notes on selecting mask option

Please select "With reset output" by the mask option when power-on reset is generated at the power supply ON, and the device is used without inputting external reset.

MB89202 Series

■ PROGRAMMING AND ERASE FLASH MEMORY ON THE MB89F202

1. Flash Memory

The flash memory is located between $\mathrm{COOOH}^{\text {and }}$ FFFFH in the CPU memory map and incorporates a flash memory interface circuit that allows read access and program access from the CPU to be performed in the same way as mask ROM. Programming and erasing flash memory is also performed via the flash memory interface circuit by executing instructions in the CPU. This enables the flash memory to be updated in place under the control of the CPU, providing an efficient method of updating program and data.

2. Flash Memory Features

- 16 K byte $\times 8$-bit configuration
- Automatic programming algorithm (Embedded Algorithm*)
- Data polling and toggle bit for detection of program/erase completion
- Detection of program/erase completion via CPU interrupt
- Compatible with JEDEC-standard commands
- No. of program / erase cycles : Minimum 10,000
*: Embedded Algorithm is a trademark of Advanced Micro Devices.

3. Procedure for Programming and Erasing Flash Memory

Programming and reading flash memory cannot be performed at the same time. Accordingly, to program or erase flash memory, the program must first be copied from flash memory to RAM so that programming can be performed without program access from flash memory.
4. Flash Memory Control Status Register (FMCS)

Address0079H	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value000X----в
	INTE	RDYINT	WE	RDY	-	-	-	-	
	R/W	R/W	R/W	R					

5. Memory Space

The memory space for the CPU access and for the flash programmer access is listed below.

Memory size	CPU address	Programmer address
16 K bytes	FFFF to $\mathrm{C} 000_{\mathrm{H}}$	FFFFH to COOOH_{H}

6. Flash Programmer Adapter and Recommended Flash Programmers

- Parallel programmer

Part number	Package	Adapter Part number	Programmer Part number *
MB89F202P-SH	DIP-32P-M06	TEF200-89F202-PSH	AF9708, AF9709/B,
MB89F202PFV	FPT-34P-M03	TEF200-89F202-PFV	AF9723 + AF9834

*: For the programmer and the version of the programmer, contact the Flash Support Group, Inc.
Inquiry : Flash Support Group, Inc. : FAX :81-(53)-428-8377
: E-mail : support@j-fsg.co.jp

- Serial programmer (PC programmer)

Part number	Package	Adapter Part number
MB89F202P-SH	DIP-32P-M06	ROM3-DIP32PM06-8L
MB89F202PFV	FPT-34P-M03	ROM3-FPT34PM03-8L

Inquiries :
Adapter : Sunhayato Corp. : FAX : 81-(3)-3971-0535
E-mail : adapter@sunhayato.co.jp
PC programmer software : FUJITSU LIMITED

MB89202 Series

7. Flash Content Protection

Flash content can be read using parallel / serial programmer if the flash content protection mechanism is not activated.
One predefined area of the flash (FFFCн) is assigned to be used for preventing the read access of flash content. If the protection code " 01 H " is written in this address (FFFCн $^{\text {) , the flash content cannot be read by any parallel/ }}$ serial programmer.
Note : The program written into the flash cannot be verified once the flash protection code is written ("01н" in FFFCH). It is advised to write the flash protection code at last.

PROGRAMMING TO THE EPROM WITH EVALUATION PRODUCT DEVICE

1. EPROM for Use

MBM27C256A (DIP-28)
2. Memory Space.

3. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0000 н to 7 FFFн.
(3) Program to 0000 н to 7 FFFH with the EPROM programmer.

MB89202 Series

BLOCK DIAGRAM

* : Large-current drive type

MB89202 Series

CPU CORE

1. Memory Space

The microcontrollers of the MB89202 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89202 series is structured as illustrated below.

- Memory Space

MB89202 Series

2. Registers

The MB89202 series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:
Program counter (PC) : A 16-bit register for indicating instruction storage positions
Accumulator (A) : A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX) : A 16-bit register for index modification
Extra pointer (EP) :
A 16-bit pointer for indicating a memory address
Stack pointer (SP)
Program status (PS) : A 16-bit register for storing a register pointer, a condition code

16 bits			Initial value
PC		: Program counter	FFFD ${ }_{\text {H }}$
A		: Accumulator	Undefined
T		: Temporary accumulator	Undefined
IX		: Index register	Undefined
EP		: Extra pointer	Undefined
SP		: Stack pointer	Undefined
RP	CCR	: Program status	I -flag $=0, \mathrm{IL} 1,0=11$ The other bit values are undefined
PS			

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR) . (See the diagram below.)

- Structure of the Program Status Register

MB89202 Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

- Rule for Conversion of Actual Addresses of the General-purpose Register Area

Generated addresses

								RP				Lower OP codes			
"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1	R0	b2	b1	b0
\dagger	\downarrow	\downarrow	\dagger	\downarrow	\downarrow	\downarrow	\dagger	\downarrow	\dagger	\dagger	\downarrow	\dagger	\downarrow	\dagger	\dagger
A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.
H-flag : Set to " 1 " when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is enabled when this flag is set to " 1 ". Interrupt is disabled when the flag is cleared to " 0 ". Cleared to " 0 " at the reset.

IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		\downarrow
1	0	2	\downarrow
1	1	3	Low $=$ no interrupt

N-flag: Set to " 1 " if the MSB becomes to " 1 " as the result of an arithmetic operation. Cleared to " 0 " when the bit is cleared to " 0 ".
Z-flag: Set to " 1 " when an arithmetic operation results in 0 . Cleared to " 0 " otherwise.
V-flag : Set to " 1 " if the complement on 2 overflows as a result of an arithmetic operation. Cleared to " 0 " if the overflow does not occur.
C-flag: Set to " 1 " when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to " 0 " otherwise. Set to the shift-out value in the case of a shift instruction.

MB89202 Series

The following general-purpose registers are provided :
General-purpose registers : An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89202 series. The bank currently in use is indicated by the register bank pointer (RP) .

- Register Bank Configuration

This address $=0100 \mathrm{H}+8 \times(\mathrm{RP})$

MB89202 Series

■ I/O MAP

Address	Register name	Register description	Read/write	Initial value
0000н	PDR0	Port 0 data register	R/W	X X X X X X X
0001н	DDR0	Port 0 data direction register	W	00000000
0002н to 00006н	Reserved			
0007н	SYCC	System clock control register	R/W	1--MM100
0008н	STBC	Standby control register	R/W	00010 - -
0009н	WDTC	Watchdog timer control register	R/W	0- - X X X X
000 Ан	TBTC	Time-base timer control register	R/W	00- - 000
000Вн	Reserved			
000 CH	PDR3	Port 3 data register	R/W	XXXXXXXX
000D	DDR3	Port 3 data direction register	W	00000000
000Ен	RSFR	Reset flag register	R	X X X X -
000Fн	PDR4	Port 4 data register	R/W	\cdots
0010н	DDR4	Port 4 data direction register	R/W	$\cdots 000$
0011н	OUT4	Port 4 output format register	R/W	$\cdots \cdots 000$
0012н	PDR5	Port 5 data register	R/W	X
0013н	DDR5	Port 5 data direction register	R/W	-- 0
0014н	RCR21	12-bit PPG control register 1	R/W	00000000
0015	RCR22	12-bit PPG control register 2	R/W	- 000000
0016н	RCR23	12-bit PPG control register 3	R/W	$0-000000$
0017н	RCR24	12-bit PPG control register 4	R/W	--000000
0018н	BZCR	Buzzer register	R/W	$\cdots \cdots$
0019н	TCCR	Capture control register	R/W	00000000
001 Ан	TCR1	Timer 1 control register	R/W	000-0000
001Вн	TCR0	Timer 0 control register	R/W	00000000
001 CH	TDR1	Timer 1 data register	R/W	X X X X X X
001 D н	TDR0	Timer 0 data register	R/W	X $\mathrm{XXXXXXX}^{\text {P }}$
001Ен	TCPH	Capture data register H	R	X XXXXXXX
001F	TCPL	Capture data register L	R	X X X X X X
0020 ${ }^{\text {H }}$	TCR2	Timer output control register	R/W	\cdots
0021н	Reserved			
0022н	CNTR	PWM control register	R/W	0-000000
0023н	COMR	PWM compare register	W	X X X X X X X
0024 ${ }^{\text {H }}$	EIC1	External interrupt 1 Control register 1	R/W	00000000

(Continued)

MB89202 Series

Address	Register name	Register description	Read/write	Initial value
0025н	EIC2	External interrupt 1 Control register 2	R/W	- - 0000
0026н	Reserved			
0027				
0028н	SMC	Serial mode control register	R/W	00000-00
0029н	SRC	Serial rate control register	R/W	--011000
002Ан	SSD	Serial status and data register	R/W	00100-1 ${ }^{\text {O }}$
002B	SIDR	Serial input data register	R	XXXXXXXX
	SODR	Serial output data register	W	X X X X X X
002CH	UPC	Clock division selection register	R/W	- - 0010
002D to 002F	Reserved			
0030н	ADC1	A/D converter control register 1	R/W	- 0000000
0031н	ADC2	A/D converter control register 2	R/W	- 0000001
0032н	ADDH	A/D converter data register H	R	- - X X
0033н	ADDL	A/D converter data register L	R	X X X X X X X
0034н	ADEN	A/D enable register	R/W	00000000
0035	Reserved			
0036н	EIE2	External interrupt 2 control register1	R/W	00000000
0037	EIF2	External interrupt 2 control register2	R/W	0
0038н	Reserved			
0039н	SMR	Serial mode register	R/W	00000000
003Ан	SDR	Serial data register	R/W	X X X X X X ${ }^{\text {x }}$
003Вн	SSEL	Serial function switching register	R/W	- - - - 0
003C ${ }_{\text {to }} 003 \mathrm{~F}_{\mathrm{H}}$	Reserved			
0040н	WRARH0	Upper-address setting register	R/W	XXXXXXXX
0041н	WRARLO	Lower-address setting register	R/W	X $\mathrm{XXXXXXX}^{\text {P }}$
0042н	WRDR0	Data setting register 0	R/W	X XXXXXXX
0043н	WRARH1	Upper-address setting register	R/W	XXXXXXXX
0044н	WRARL1	Lower-address setting register	R/W	XXXXXXXX
0045	WRDR1	Data setting register 1	R/W	x \times x \times x \times x
0046н	WREN	Address comparison EN register	R/W	XXXXXX00
0047	WROR	Wild-register data test register	R/W	- - - 00
0048 to 005FH	Reserved			

(Continued)

MB89202 Series

(Continued)

Address	Register name	Register description	Read/write	Initial value
0060н	PDR6	Port 6 data register	R/W	X X
0061н	DDR6	Port 6 data direction register*	R/W	$\cdots \cdots 0$
0062н	PUL6	Port 6 pull-up setting register	R/W	00
0063н	PDR7	Port 7 data register	R/W	\cdots
0064н	DDR7	Port 7 data direction register	R/W	$\cdots \cdots 0$
0065н	PUL7	Port 7 pull-up setting register	R/W	$\cdots \cdots$
0066н to 006F\%	Reserved			
0070н	PUL0	Port-0 pull-up setting register	R/W	00000000
0071H	PUL3	Port-3 pull-up setting register	R/W	00000000
0072н	PUL5	Port-5 pull-up setting register	R/W	- - 0
0073н to 0078 ${ }^{\text {н }}$	Reserved			
0079н	FMCS	Flash memory control status register	R/W	000 X -
007Ан	Reserved			
007Вн	ILR1	Interrupt level setting register1	W	1111111111
007Сн	ILR2	Interrupt level setting register2	W	1 1111111111
007Dн	ILR3	Interrupt level setting register3	W	11111111111
007Ен	ILR4	Interrupt level setting register4	W	1111111111
007F ${ }_{\text {H }}$	ITR	Interrupt test register	Not available	\cdots

- : Unused, X : Undefined, M : Set using the mask option
* : No used in MB89F202

Note : Do not use prohibited areas.

MB89202 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*	Vcc	Vss - 0.3	Vss +6.0	V	
Input voltage*	V	Vss - 0.3	V cc +0.3	V	
Output voltage*	Vo	Vss -0.3	V cc +6.0	V	
"L" level maximum output current	lo	-	15	mA	
"L" level average output current	lolav1	-	4	mA	Average value (operating current \times operating rate) Pins excluding P40 to P43, P70 to P72
	lolavz	-	12	mA	Average value (operating current \times operating rate) Pins P40 to P43, P70 to P72
"L" level total maximum output current	EloL	-	100	mA	
" H " level maximum output current	Іон	-	-10	mA	Pins excluding P60, P61
"H" level average output current	lohav	-	-4	mA	Average value (operating current \times operating rate)
" H " level total maximum output current	Σ Іон	-	-50	mA	
Power consumption	Pd	-	200	mW	
Operating temperature	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*: This parameter is based on $\mathrm{V} s=0.0 \mathrm{~V}$.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89202 Series

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Voc	2.2	5.5	V	MB89202
		3.5	5.5	V	MB89F202
		2.7	5.5	V	MB89V201
		1.5	5.5	V	Retains the RAM state in stop mode
"H" level input voltage	VIH	0.7 Vcc	$\mathrm{Vcc}+0.3$	V	P00 to P07, P31, P37, P40 to P43, P50, P60, P61, P70 to P72
	Vihs	0.8 Vcc	$\mathrm{Vcc}+0.3$	V	RST, EC, INT20 to INT27, UCK/SCK, INT10 to INT12, P30, P32 to P36, UI/SI
"L" level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	$\begin{aligned} & \text { P00 to P07, P31, P37, P40 to P43, P50, } \\ & \text { P60, P61, P70 to P72 } \end{aligned}$
	Vııs	Vss - 0.3	0.2 Vcc	V	$\overline{\mathrm{RST}}, \mathrm{EC}, \overline{\mathrm{INT} 20}$ to $\overline{\mathrm{NNT} 27}, \mathrm{UCK} / \mathrm{SCK}$, INT10 to INT12, P30, P32 to P36, UI/SI
Open-drain output pin application voltage	V	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	P40 to P43, RST
Operating temperature	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	Room temperature is recommended for programming the flash memory on MB89F202

MB89202 Series

Operating Assurance for MB89202 and MB89V201

Operating Assurance for MB89F202

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB89202 Series

3. DC Characteristics

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Fch}_{\mathrm{ch}}=12.5 \mathrm{MHz}\right.$ (External clock), $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
" H " level input voltage	Vı	```P00 to P07, P31, P37, P40 to P43, P50, P60, P61, P70 to P72```	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	Vihs	P30, P32 to P36, $\overline{\text { RST }}$ UCK/SCK, UI/SI, EC, $\overline{\text { INT20 to }} \overline{\text { NT2 }} 27$, INT10 to INT12	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
"L" level input voltage	VIL	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P31, P37, P40 to P43, } \\ & \text { P50, P60, P61, } \\ & \text { P70 to P72 } \end{aligned}$	-	Vss - 0.3	-	0.3 Vcc	V	
	Vıs	P30, P32 to P36, $\overline{\text { RST }}$, UCK/SCK, UI/SI, EC, $\overline{\text { INT20 to }} \overline{\text { NT2 }} 27$, INT10 to INT12	-	Vss - 0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P40 to P43, RST	-	Vss - 0.3	-	V cc +0.3	V	
"H" level output voltage	Vон	$\begin{aligned} & \text { P00 to P07, P30 to P37, } \\ & \text { P40 to P43, P50, } \\ & \text { P70 to P72 } \end{aligned}$	Іон $=-4.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level output voltage	Voli	$\begin{aligned} & \text { P00 to P07, P30 to P37, } \\ & \text { P50, } \overline{\text { RST }} \end{aligned}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	P40 to P43, P70 to P72	$\mathrm{loL}=12.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current	$\mathrm{lı}$	```P00 to P07, P30 to P37, P40 to P43, P50 , P60, P61, RST, P70 to P72```	$0.45 \mathrm{~V}<\mathrm{V}_{\mathrm{l}}<\mathrm{V}_{\text {cc }}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor
Pull-up resistance	Rpull	P00 to P07, P30 to P37, P50, $\overline{\text { RST, P70 }}$ to P72	$\mathrm{V}=0.0 \mathrm{~V}$	25	50	100	k Ω	MB89202
		$\begin{aligned} & \text { P00 to P07, P30 to P37, } \\ & \text { P50, P70 to P72 } \end{aligned}$						MB89F202

(Continued)

MB89202 Series

(Continued)

Parameter	Symbol	Pin name		Condition	Value			Unit	Remarks	
				Min	Typ	Max				
Power supply current	Icc	Vcc	Normal operation mode (External clock, highest gear speed)		When A/D converter stops	-	8	12	mA	MB89202
				-		6	9	mA	MB89F202	
				When A/D converter starts	-	10	15	mA	MB89202	
					-	8	12	mA	MB89F202	
	Iccs		Sleep mode (External clock, highest gear speed)	When A/D converter stops	-	4	6	mA	MB89202	
					-	3	5	mA	MB89F202	
	Іссн		Stop mode $\mathrm{Ta}=+25^{\circ} \mathrm{C}$ (External clock)	When A/D converter stops	-	-	1	$\mu \mathrm{A}$	MB89202	
					-	-	10	$\mu \mathrm{A}$	MB89F202	
Input capacitance	Cin	Other than C, Vcc, Vss		-	-	10	-	pF		

4. AC Characteristics

(1) Reset Timing

$$
\left(\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
$\overline{\text { RST "L" pulse width }}$	tzLzH	-	45	-	ns	
Internal reset pulse extension	tirst	-	48 thсуц*	-	ns	

* : thcyl 1 oscillating clock cycle time

Notes: •When the power-on reset option is not on, leave the external reset on until oscillation becomes stable. - If the reset pulse applied to the external reset pin ($\overline{\mathrm{RST}}$) does not meet the specifications, it may cause malfunctions. Use caution so that the reset pulse less than the specifications will not be fed to the external reset pin ($\overline{\mathrm{RST}}$).

(2) Power-on Reset

$$
\left(\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
Power supply rising time	tR	-	-	50	ms	
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

\square
Note : The supply voltage must be set to the minimum value required for operation within the prescribed default oscillation settling time.

MB89202 Series

(3) Clock Timing

$$
\left(\mathrm{V} \text { ss }=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
Clock frequency	Fсн	-	1	12.5	MHz	
Clock cycle time	txcyL		80	1000	ns	
Input clock pulse width	$\begin{aligned} & \text { twh } \\ & \text { twL } \end{aligned}$		20	-	ns	
Input clock rising/falling time	$\begin{aligned} & \text { tcr } \\ & \text { tcc } \end{aligned}$		-	10	ns	

- X0 and X1 Timing and Conditions
x0

- Main Clock Conditions

When a crystal or ceramic resonator is used

When an exernal clock is used

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fсн, 8/Fсн, 16/Fсн, 64/Fсн	$\mu \mathrm{s}$	tinst $=0.32 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=12.5 \mathrm{MHz}\left(4 / \mathrm{F}_{\mathrm{CH}}\right)$

MB89202 Series

(5) Peripheral Input Timing
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
Peripheral input "H" pulse width	tııн	INT10 to INT12, INT20 to INT27, EC	2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width	tiHIL		2 tinst*	-	$\mu \mathrm{s}$	

*: For information on tinst see " (4) Instruction Cycle".
 $\overline{\text { INT20 to }} \overline{\text { INT27, }}$ EC

\qquad
\qquad

MB89202 Series

(6) UART, Serial I/O Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	UCK/SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$	
UCK/SCK $\downarrow \rightarrow$ SO time	tslov	UCK/SCK, SO		-200	200	ns	
Valid SI \rightarrow UCK/SCK \uparrow	tivsh	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	
UCK/SCK $\uparrow \rightarrow$ Valid SI hold time	tshlı	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsL	UCK/SCK	External shift clock mode	tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tslsh	UCK/SCK		tinst*	-	$\mu \mathrm{s}$	
UCK/SCK $\downarrow \rightarrow$ SO time	tslov	UCK/SCK, SO		0	200	ns	
Valid SI \rightarrow UCK/SCK	tivs	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	
UCK/SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	

*: For information on tinst, see " (4) Instruction Cycle".

- Internal Shift Clock Mode

- External Shift Clock Mode

MB89202 Series

5. A/D Converter

(1) A/D Converter Electrical Characteristics
$\left(\mathrm{V}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	-	-	-	10	bit	
Total error		-5.0	-	+5.0	LSB	
Linearity error		-3.0	-	+3.0	LSB	
Differential linearity error		-2.5	-	+2.5	LSB	
Zero transition voltage	Vot	Vss - 3.5 LSB	Vss + 0.5 LSB	Vss + 4.5 LSB	V	
Full-scale transition voltage	Vfst	Vcc-6.5 LSB	Vcc-1.5 LSB	Vcc + 2.0 LSB	V	
A/D mode conversion time	-	-	-	38 tinst*	$\mu \mathrm{s}$	
Analog port input current	Iain	-	-	10	$\mu \mathrm{A}$	
Analog input voltage range	-	0	-	Vcc	V	
Power supply voltage for A/D accuracy assurance	Vcc	4.5	-	5.5	V	

* : For information on tinst, see " (4) Instruction Cycle" in "4. AC Characteristics."

MB89202 Series

(2) A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A/D converter
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit : LSB)

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 11111111" \leftrightarrow "11 11111110") from actual conversion characteristics

- Differential linearity error (unit : LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit : LSB)

The difference between theoretical and actual conversion values

(Continued)

MB89202 Series

(Continued)

MB89202 Series

(3) Notes on Using A/D Converter

- About the external impedance of analog input and its sampling time
- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.
- Analog input circuit model

Analog input

Note : The values are reference values.

R	C
$2.2 \mathrm{k} \Omega(\operatorname{Max})$	$45 \mathrm{pF}(\operatorname{Max})$
$2.0 \mathrm{k} \Omega(\operatorname{Max})$	$16 \mathrm{pF}(\operatorname{Max})$

MB89202
MB89F202
2.0 k Ω (Max)
16 pF (Max)

- To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
- The relationship between the external impedance and minimum sampling time
[External impedance $=0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$] [External impedance $=0 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$]

- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

- About errors

As $\left|\mathrm{V}_{\mathrm{cc}}-\mathrm{AV} \mathrm{Vss}_{\mathrm{s}}\right|$ becomes smaller, values of relative errors grow larger.

MB89202 Series

6. MB89F202 Flash Memory Program / Erase Characteristics

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Chip erase time (16 KB)	-	0.5^{+1}	7.5^{+2}	s	Excludes programming prior to erasure
Byte programming time	-	32	3600	$\mu \mathrm{~s}$	Excludes system-level overhead
Program / Erase cycle	10,000	-	-	cycle	

*1: $\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}, 10,000$ cycles
*2: $\mathrm{Ta}=+85^{\circ} \mathrm{C}, \mathrm{Vcc}=2.7 \mathrm{~V}, 10,000$ cycles

MB89202 Series

EXAMPLE CHARACTERISTICS

1. Power supply current

- MB89202/F202 : 4 MHz (when external clock are used)

- MB89202/F202 : 8 MHz (when external clock are used)

MB89202
Normal operation mode

$$
\left(\mathrm{Icc} 1-\mathrm{V}_{\mathrm{cc}}, \mathrm{Icc} 2-\mathrm{V}_{\mathrm{cc}}\right)
$$

MB89202
Sleep mode
($\left.\operatorname{lccs} 1-V_{c c}, \operatorname{lccs} 2-V_{c c}\right)$

MB89F202
Normal operation mode
(Icc1 - Vcc, Icc2 - Vcc)

MB89F202
Sleep mode $\left(\operatorname{Iccs} 1-V_{c c}, I_{c c s} 2-V_{c c}\right)$

MB89202 Series

- MB89202/F202 : 12.5 MHz (when external clock is used)

MB89202
Sleep mode
(Iccs1 - Vcc, Iccs2 - Vcc)

MB89F202
Sleep mode (Iccs1 - Vcc, Iccs2 - Vcc)

MB89202 Series

- MB89202/F202 : 12.5 MHz (when external clock is used)

MB89202
Stop mode (Icch - Ta)
($\mathrm{FcH}=12.5 \mathrm{MHz}, \mathrm{VCC}=5.5 \mathrm{~V}$)

MB89F202 Stop mode (lcch - Ta)

MB89202 Series

2. "L" level output voltage

3. "H" level output voltage

> MB89202 (Vcc - Vон) vs. Іон

MB89202 Series

MASK OPTIONS

No.	Part number	MB89202	MB89F202	MB89V201
	Specifying procedure	Specify when ordering masking	Specify by part number	
1	Selection of initial value of main clock oscillation settling time* (with $\mathrm{F}_{\mathrm{ch}}=12.5 \mathrm{MHz}$) 01 : $2^{14 /} /$ Fch $_{\text {сн }}$ (Approx. 1.31 ms) $10: 2^{17 /} / \mathrm{FcH}$ (Approx. 10.5 ms) 11 : $2^{18} / \mathrm{Fcн}$ (Approx. 21.0 ms)	Selectable	Fixed to $2^{18} / \mathrm{Fch}_{\text {ch }}$	Fixed to $2^{18} / \mathrm{Fch}^{\text {cher }}$
2	Reset pin output With reset output Without reset output	Selectable	With reset output	With reset output
3	Power on reset selection With power on reset Without power on reset	Selectable	With power on reset	With power on reset

Fch : Main clock oscillation frequency
*: Initial value to which the oscillation settling time bit (SYCC : WT1, WTO) in the system clock control register is set Note

- Notes on selecting mask option

Please select "With reset output" by the mask option when power-on reset is generated at the power supply ON, and the device is used without inputting external reset.

ORDERING INFORMATION

Part number	Package	Remarks
MB89202P-SH	32-pin plastic SH-DIP (DIP-32P-M06)	
MB89F202P-SH		
MB89202PFV		
MB89F202PFV	64-pin plastic LQFP (FPT-64P-M03)	
MB89V201PFV		

MB89202 Series

PACKAGE DIMENSIONS

32-pin plastic SH-DIP (DIP-32P-M06)

Note 1) *: These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness.

© 2003 FUJTSU LIMIEE D32018S-C.1-1
Dimensions in mm (inches).
Note: The values in parentheses are reference values
(Continued)

MB89202 Series

(Continued)

34-pin plastic SSOP	Note 1) $* 1:$ Resin protrusion. (Each side : +0.15 (.006) Max).
(FPT-34P-M03)	Note 2) $* 2:$ These dimensions do not include resin protrusion.
	Note 3) Pins width and pins thickness include plating thickness.
	Note 4) Pins width do not include tie bar cutting remainder.

Dimensions in mm (inches).
Note: The values in parentheses are reference values

MB89202 Series

FUJITSU LIMITED

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *1: DIP-32P-M06
 *2 : FPT-34P-M03

