8-bit Microcontroller

CMOS

F²MC-8L MB89202R Series

MB89202/202Y/F202RA/F202RAY/V201

- DESCRIPTION

The MB89202R series is a line of single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such, timers, a serial interface, an A/D converter and an external interrupt.
Note: F^{2} MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}$ family CPU core
- Maximum memory space : 64 Kbytes
- Minimum execution time : $0.32 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$
- Interrupt processing time : $2.88 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$
- I/O ports : Max 26 channels
- 21-bit time-base timer
- 8-bit PWM timer
- 8/16-bit capture timer/counter
- 10-bit A/D converter : 8 channels
- UART
- 8-bit serial I/O
- External interrupt 1 : Up to 3 channels
- External interrupt 2 : Up to 8 channels
- Wild Register : 2 bytes
- Flash (at least 10,000 program / erase cycles) with read protection
(Continued)

For the information for microcontroller supports, see the following web site.
http://edevice.fujitsu.com/micom/en-support/

MB89202R Series

(Continued)

- Low-power consumption modes (sleep mode, and stop mode)
- SH-DIP-32, SSOP-34 package
- CMOS Technology

MB89202R Series

PRODUCT LINEUP

Part number Parameter	$\begin{aligned} & \text { MB89202 } \\ & \text { MB89202Y } \end{aligned}$	$\begin{aligned} & \text { MB89F202RA } \\ & \text { MB89F202RAY } \end{aligned}$	MB89V201
Classification	Mask ROM product	Flash memory product (read protection)	Evaluation product (for development)
ROM size	$16 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal flash)	$32 \mathrm{~K} \times 8$ bits (external EPROM)
RAM size	512×8 bits		
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum execution time : $0.32 \mu \mathrm{~s}$ to $5.1 \mu \mathrm{~s}(12.5 \mathrm{MHz})$ Interrupt processing time : $2.88 \mu \mathrm{~s}$ to $46.1 \mu \mathrm{~s}(12.5 \mathrm{MHz})$		
Ports	$\begin{aligned} \text { General-purpose I/O ports (CMOS): } & 26 \text { (also serve as peripherals) } \\ & (4 \text { ports are also an N-ch open-drain type.) }\end{aligned}$		
21-bit time-base timer	21-bit Interrupt cycle : $0.66 \mathrm{~ms}, 2.64 \mathrm{~ms}, 21 \mathrm{~ms}$, or 335.5 ms with 12.5 MHz main clock		
Watchdog timer	Reset generation cycle : 335.5 ms minimum with 12.5 MHz main clock		
8-bit PWM timer	8-bit interval timer operation (square output capable, operating clock cycle : $0.32 \mu \mathrm{~s}, 2.56 \mu \mathrm{~s}, 5.1 \mu \mathrm{~s}, 20.5 \mu \mathrm{~s})$ 8-bit resolution PWM operation (conversion cycle : $81.9 \mu \mathrm{~s}$ to 21.47 s : in the selection of internal shift clock of $8 / 16$-bit capture timer) Count clock selectable between 8 -bit and 16 -bit timer/counter outputs		
$\begin{aligned} & \text { 8/16-bit } \\ & \text { capture, timer/counter } \end{aligned}$	External captured input selectable 8 -bit capture timer/counter $\times 1$ channel +8 -bit timer or 16 -bit capture timer/counter $\times 1$ channel Capable of event count operation and square wave output with 8 -bit timer 0 or 16-bit counter		
UART	Transfer data length : 6/7/8 bits		
8-bit Serial I/O	8 bits LSB first/MSB first selectable One clock selectable from four operation clocks (one external shift clock, three internal shift clocks : $0.8 \mu \mathrm{~s}, 6.4 \mu \mathrm{~s}, 25.6 \mu \mathrm{~s}$)		
12-bit PPG timer	Output frequency : Pulse width and cycle selectable		
External interrupt 1 (wake-up function)	3 independent channels(Interrupt vector, request flag, request output enabled) Rising/falling/both edge selectable Used for wake-up from stop/sleep mode. (Edge detection is also permitted in the stop mode.)		
External interrupt 2 (wake-up function)	8 channels (low-level interrupt only) Used for wake-up from stop/sleep mode. (Edge detection is also permitted in the stop mode.)		

(Continued)

MB89202R Series

(Continued)

Part number Parameter	$\begin{gathered} \text { MB89202 } \\ \text { MB89202Y } \end{gathered}$	$\begin{aligned} & \text { MB89F202RA } \\ & \text { MB89F202RAY } \end{aligned}$	MB89V201
10-bit A/D converter	10-bit precision $\times 8$ channels A/D conversion function (Conversion time : $12.16 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$) Continuous activation by $8 / 16$-bit timer/counter output or time-base timer counter		
Wild Register	8 -bit $\times 2$		
Standby mode	Sleep mode, and Stop mode		
Overhead time from reset to the first instruction execution	Power-on reset : Oscillation stabillization wait*1 External reset : a few $\mu \mathrm{s}$ Software reset : a few $\mu \mathrm{s}$	Power-on reset : Voltage regulator and oscillation stabillization wait ($31.5 \mathrm{~ms} / 12.5 \mathrm{MHz}$) External reset : Oscillation stabillization wait ($21.0 \mathrm{~ms} / 12.5 \mathrm{MHz}$) Software reset : a few $\mu \mathrm{s}$	Power-on reset : Oscillation stabillization wait ($21.0 \mathrm{~ms} / 12.5 \mathrm{MHz}$) External reset : Oscillation stabillization wait ($21.0 \mathrm{~ms} / 12.5 \mathrm{MHz}$) Software reset : a few $\mu \mathrm{s}$
Power supply voltage*2	2.2 V to 5.5 V	3.5 V to 5.5 V	2.7 V to 5.5 V

*1 : Check section "■ MASK OPTIONS"
*2 : The minimum operating voltage varies with the operating frequency, the function. (The operating voltage of the A/D converter is assured separately. Check section "■ ELECTRICAL CHARACTERISTICS.")

- PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89202	MB89202Y	MB89F202RA	MB89F202RAY	MB89V201
DIP-32P-M06	\bigcirc	\times	\bigcirc	\times	\times
FPT-34P-M03	\times	\bigcirc	\times	\bigcirc	\times
FPT-64P-M24	\times	\times	\times	\times	\bigcirc

\bigcirc : Available \times :Not available

DIFFERENCES AMONG PRODUCTS

- Memory Size

Before evaluating using the evaluation product, verify its differences from the product that will actually be used.

- Mask Options

Functions that can be selected as options and how to designate these options vary by the product. Before using options check section "■ MASK OPTIONS".

MB89202R Series

PIN ASSIGNMENTS

- MB89202, MB89F202RA

(TOP VIEW)

(DIP-32P-M06)
(Continued)

MB89202R Series

(Continued)

- MB89202Y, MB89F202RAY
(TOP VIEW)

*: Large-current drive type
NC: Internally connected. Do not use.
(FPT-34P-M03)

MB89202R Series

PIN DESCRIPTION

Pin No.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type } \end{gathered}$	Function
SH-DIP32+1	SSOP34*2			
8	8	X0	A	Pins for connecting the crystal for the main clock. To use an external clock, input the signal to X0 and leave X1 open.
9	9	X1		
5, 6	5,6	P60, P61	H/E	General-purpose CMOS input ports for MB89F202RA/F202RAY. General-purpose CMOS I/O ports for MB89202/202Y/MB89V201.
7	7	$\overline{\text { RST }}$	C	Reset I/O pin. This pin serves as an N -channel open-drain reset output and a reset input as well. The reset is a hysteresis input. It outputs the "L" signal in response to an internal reset request. Also, it initializes the internal circuit upon input of the "L" signal.
1 to 4	1 to 4	$\begin{array}{\|l} \text { P04/INT24 to } \\ \text { P07/INT27 } \end{array}$	D	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2. The input of external interrupt 2 is a hysteresis input.
28,29	30, 31	P00/NT20/ AN4, P01/INT21/ AN5	G	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2 or as a 10 -bit A/D converter analog input. The input of external interrupt 2 is a hysteresis input.
30,31	32, 33	```P02/INT22/ AN6, P03/INT23/ AN7```	G	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2 or as a 10 -bit A/D converter analog input. The input of external interrupt 2 is a hysteresis input.
19	20	P30/UCK/ SCK	B	General-purpose CMOS I/O port. This pin also serves as the clock I/O pin for the UART or 8-bit serial I/O. The resource is a hysteresis input.
18	19	P31/UO/SO	E	General-purpose CMOS I/O port. This pin also serves as the data output pin for the UART or 8-bit serial I/O.
17	18	P32/UI/SI	B	General-purpose CMOS I/O port. This pin also serves as the data input pin for the UART or 8-bit serial I/O. The resource is a hysteresis input.
15	15	P33/EC	B	General-purpose CMOS I/O port. This pin also serves as the external clock input pin for the 8/16-bit capture timer/counter. The resource is a hysteresis input.
14	14	P34/TO/ INT10	B	General-purpose CMOS I/O port. This pin also serves as the output pin for the 8/16-bit capture timer/ counter or as the input (wake-up input) for external interrupt 1. The resource is a hysteresis input.
13, 12	13, 12	P35/INT11, P36/INT12	B	General-purpose CMOS I/O ports. These pins also serve as the input (wake-up input) for external interrupt 1 . The resource is a hysteresis input.

(Continued)

MB89202R Series

(Continued)

Pin No.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type } \end{gathered}$	Function
SH-DIP32+1	SSOP34*2			
11	11	$\begin{aligned} & \text { P37/BZ/ } \\ & \text { PPG } \end{aligned}$	E	General-purpose CMOS I/O port. This pin also serves as the buzzer output pin or the 12-bit PPG output.
20	21	P50/PWM	E	General-purpose CMOS I/O port. This pin also serves as the 8 -bit PWM timer output pin.
24 to 27	26 to 29	$\begin{gathered} \hline \text { P40/AN0 } \\ \text { to } \\ \text { P43/AN3 } \end{gathered}$	F	General-purpose CMOS I/O ports. These pins can also be used as N -channel open-drain ports. These pins also serve as 10 -bit A/D converter analog input pins.
21 to 23	23 to 25	P70 to P72	E	General-purpose CMOS I/O ports.
32	34	Vcc	-	Power supply pin
10	10	Vss	-	Power (GND) pin
16	17	C	-	MB89F202RA/F202RAY: Capacitance pin for regulating the power supply. Connect an external ceramic capacitor of about $0.1 \mu \mathrm{~F}$. MB89202/202Y: This pin is not internally connected. It is unnecessary to connect a capacitor.
-	16, 22	NC	-	Internally connected pins Be sure to leave it open.

*1: DIP-32P-M06
*2: FPT-34P-M03
*3: Refer to "■l/O CIRCUIT TYPE" for details on the I/O circuit types.

MB89202R Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A	Standby control signal	At an oscillation feedback resistance of approximately $500 \mathrm{k} \Omega$
B		- CMOS output - Hysteresis input - Pull-up resistor optional
C		- At an output pull-up resister (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ (not available for MB89F202RA/F202RAY) - N -ch open-drain reset output - Hysteresis input - High voltage input tolerable in MB89F202RA/F202RAY
D		- CMOS output - CMOS input - Hysteresis input (Resource input) - Pull-up resistor optional

(Continued)

MB89202R Series

(Continued)

Type	Circuit	Remarks
E		- CMOS output - CMOS input - Pull-up resistor optional - P70-P72 are large-current drive type
F		- CMOS output - CMOS input - Analog input - N-ch open-drain output available - P40-P43 are large-current drive type
G		- CMOS output - CMOS input - Hysteresis input (Resource input) - Analog input
H		CMOS input

MB89202R Series

■ HANDLING DEVICES

- Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ ELECTRICAL CHARACTERISTICS" is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

- Treatment of Unused Input Pins

Leaving unused input terminals open may lead to permanent damage due to malfunction and latchup; pull up or pull down the terminals through the resistors of $2 \mathrm{k} \Omega$ or more.

Make the unused I/O terminal in a state of output and leave it open or if it is in an input state, handle it with the same procedure as the input terminals.

- Treatment of NC Pins

Be sure to leave (internally connected) NC pins open.

- Power Supply Voltage Fluctuations

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard $V \mathrm{cc}$ value at the commercial frequency ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

- Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

- About the Wild Register Function

No wild register can be debugged on the MB89V201. For the operation check, test the MB89F202RA/F202RAY installed on a target system.

- Program Execution in RAM

When the MB89V201 is used, no program can be executed in RAM.

- Note to Noise in the External Reset Pin ($\overline{\text { RST }}$)

If the reset pulse applied to the external reset pin ($\overline{\mathrm{RST}}$) does not meet the specifications, it may cause malfunctions. Use caution so that the reset pulse less than the specifications will not be fed to the external reset pin (RST).

- External pullup for the External Reset Pin ($\overline{\mathrm{RST}}$)

Internal pullup control for $\overline{\text { RST }}$ pin is not available for MB89F202RA/F202RAY. To ensure proper external reset control in MB89F202RA/F202RAY, an external pullup (recommend $100 \mathrm{k} \Omega$) for RST pin must be required. Please also check section "■ PROGRAMMING AND ERASE FLASH MEMORY".

MB89202R Series

- Notes on selecting mask option

Please select "With reset output" by the mask option when power-on reset is generated at the power supply ON, and the device is used without inputting external reset.

MB89202R Series

■ PROGRAMMING AND ERASE FLASH MEMORY

1. Flash Memory

The flash memory incorporates a flash memory interface circuit that allows read access and program access from the CPU to be performed in the same way as mask ROM. Programming and erasing flash memory is also performed via the flash memory interface circuit by executing instructions in the CPU. This enables the flash memory to be updated in place under the control of the CPU, providing an efficient method of updating program and data.

2. Flash Memory Features

- 16 K byte $\times 8$-bit configuration or 8 K byte $\times 8$-bit configuration*
- Automatic programming algorithm (Embedded Algorithm)
- Data polling and toggle bit for detection of program/erase completion
- Detection of program/erase completion via CPU interrupt
- Compatible with JEDEC-standard commands
- No. of program / erase cycles : Minimum 10,000
* : Check section "Memory Space".

3. Procedure for Programming and Erasing Flash Memory

Programming and reading flash memory cannot be performed at the same time. Accordingly, to program or erase flash memory, the program must first be copied from flash memory to RAM so that programming can be performed without program access from flash memory. Also for flash memory program or erase, a high voltage (instead of an external pullup) must be applied to external reset $\overline{\mathrm{RST}}$ pin. Check section " 6. Flash Memory Program/Erase Characteristics" in " ■ ELECTRICAL CHARACTERISTICS".

4. Flash Memory Control Status Register (FMCS)

5. Memory Space

The series has 1 flash memory size configuration. The memory space for the CPU access and for the flash programmer access of the configuration is listed below. Check section " 6. Flash Memory Program/Erase Characteristics" in " \quad ELECTRICAL CHARACTERISTICS".

Part Number	Memory size	CPU address	Programmer address
MB89F202RA MB89F202RAY	16 K bytes	FFFF to $\mathrm{C} 000_{H}$	3 3FFF to 0000_{H}

6. Flash Content Protection

Flash content can be read using parallel / serial programmer if the flash content protection mechanism is not activated.

One predefined area of the flash (FFFCH) is assigned to be used for preventing the read access of flash content. If the protection code " 01μ " is written in this address (FFFCH), the flash content cannot be read by any parallel/ serial programmer.
Note : The program written into the flash cannot be verified once the flash protection code is written ("01H" in FFFCH). It is advised to write the flash protection code at last.

MB89202R Series

PROGRAMMING TO THE EPROM WITH EVALUATION PRODUCT DEVICE

1. EPROM for Use

MBM27C256A (DIP-28)
2. Memory Space

3. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0000 н to 7 FFFн.
(3) Program to 0000 H to 7 FFF н with the EPROM programmer.

MB89202R Series

BLOCK DIAGRAM

MB89202R Series

CPU CORE

1. Memory Space

The microcontrollers of the MB89202R series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89202R series is structured as illustrated below.

- Memory Space

Normal operating mode	
Address	
0000H \quad I/O	
$\begin{aligned} & 007 \mathrm{FH} \\ & 0080 \mathrm{H} \end{aligned}$	
0100H	RAM
Address\#0 Address\#0 + 0001H	
Address\#1 Address\#1 + 0001H	
	Not available
Address\#2-0001H Address\#2	
	Program area using Memory Type\#

Part Number	RAM size	Address\#0	Address\#1
MB89V201			
MB89F202RA/F202RAY	512 bytes	$01 F_{H}$	$027 F_{H}$
MB89202/202Y			

Part Number	Memory Type\#	Address\#2
MB89V201	32 Kbytes External EPROM	8000_{H}
MB89F202RA/F202RAY	16 Kbytes Internal Flash Memory	$\mathrm{C} 000_{\mathrm{H}}$
MB89202/202Y	16 Kbytes ROM	$\mathrm{C} 000_{\mathrm{H}}$

MB89202R Series

2. Registers

The MB89202R series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:
Program counter (PC) : A 16-bit register for indicating instruction storage positions
Accumulator (A) :
A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Index register (IX) : A 16-bit register for index modification
Extra pointer (EP)
A 16-bit pointer for indicating a memory address
A 16-bit register for indicating a stack area
Program status (PS) : A 16-bit register for storing a register pointer, a condition code

16 bits			Initial value
PC		Program counter	FFFD ${ }_{\text {н }}$
A		Accumulator	Undefined
T		Temporary accumulator	Undefined
IX		: Index register	Undefined
EP		Extra pointer	Undefined
SP		Stack pointer	Undefined
RP	CCR	: Program status	I -flag $=0, \mathrm{IL} 1,0=11$ The other bit values are undefined.
PS			

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

- Structure of the Program Status Register

MB89202R Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

- Rule for Conversion of Actual Addresses of the General-purpose Register Area

Generated addresses

								RP					Lower OP codes				
"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1		R0		b2	b1	b0
\downarrow	\downarrow	\downarrow	\downarrow	\dagger	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\dagger	\dagger	\dagger		\dagger	\downarrow	\downarrow
A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5		A4		A3	A2	A1	A0

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.
H-flag : Set to " 1 " when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to " 0 " otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is enabled when this flag is set to " 1 ". Interrupt is disabled when the flag is cleared to " 0 ". Cleared to "0" at the reset.
IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low $=$ no interrupt

N-flag : Set to " 1 " if the MSB becomes to " 1 " as the result of an arithmetic operation. Cleared to "0" when the bit is cleared to " 0 ".
Z-flag : Set to " 1 " when an arithmetic operation results in 0 . Cleared to " 0 " otherwise.
V-flag : Set to " 1 " if the complement on 2 overflows as a result of an arithmetic operation. Cleared to " 0 " if the overflow does not occur.
C-flag : Set to " 1 " when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to " 0 " otherwise. Set to the shift-out value in the case of a shift instruction.

MB89202R Series

The following general-purpose registers are provided :
General-purpose registers : An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks (in 512 RAM size) can be used in the MB89202R series. The bank currently in use is indicated by the register bank pointer (RP) .

- Register Bank Configuration

[^0]
MB89202R Series

I/O MAP

Address	Register name	Register description	Read/write	Initial value
0000н	PDR0	Port 0 data register	R/W	X $\times \times \times X \times \mathrm{X}$ в
0001н	DDR0	Port 0 data direction register	W	00000000 в
0002н to 0006н	Reserved			
0007н	SYCC	System clock control register	R/W	1--11100 в
0008н	STBC	Standby control register	R/W	00010 - - в
0009н	WDTC	Watchdog timer control register	R/W	$0 \cdots \mathrm{XXXX}$ в
000Ан	TBTC	Time-base timer control register	R/W	00- - 000 в
000Вн	Reserved			
$000 \mathrm{CH}_{\text {H }}$	PDR3	Port 3 data register	R/W	XXXXXXX в
000D ${ }_{\text {н }}$	DDR3	Port 3 data direction register	W	00000000
000Ен	RSFR	Reset flag register	R	X X X ${ }^{\text {- }}$
000F ${ }_{\text {H }}$	PDR4	Port 4 data register	R/W	$\cdots \times \times \times$ в
0010н	DDR4	Port 4 data direction register	R/W	- 0000
0011н	OUT4	Port 4 output format register	R/W	- - 0000
0012н	PDR5	Port 5 data register	R/W	X
0013н	DDR5	Port 5 data direction register	R/W	0
0014н	RCR21	12-bit PPG control register 1	R/W	00000000 в
0015	RCR22	12-bit PPG control register 2	R/W	- 000000
0016н	RCR23	12-bit PPG control register 3	R/W	0-000000
0017 ${ }^{\text {H }}$	RCR24	12-bit PPG control register 4	R/W	- 000000 в
0018н	BZCR	Buzzer register	R/W	\cdots - - 000 в
0019н	TCCR	Capture control register	R/W	00000000 в
001 Ан	TCR1	Timer 1 control register	R/W	000-0000
001Вн	TCR0	Timer 0 control register	R/W	00000000 в
001 CH	TDR1	Timer 1 data register	R/W	X \times XXXXX ${ }_{\text {в }}$
$001 \mathrm{D}_{\text {н }}$	TDR0	Timer 0 data register	R/W	XXXXXXXX
001Ен	TCPH	Capture data register H	R	XXXXXXX ${ }^{\text {¢ }}$
001 FH	TCPL	Capture data register L	R	X $\mathrm{XXXXXXX}^{\text {в }}$
0020н	TCR2	Timer output control register	R/W	00
0021н	Reserved			
0022н	CNTR	PWM control register	R/W	0-000000 в
0023н	COMR	PWM compare register	W	X X X X X X $\mathrm{XX}_{\text {в }}$
0024	EIC1	External interrupt 1 Control register 1	R/W	00000000 в

(Continued)

MB89202R Series

Address	Register name	Register description	Read/write	Initial value
0025 ${ }^{\text {r }}$	EIC2	External interrupt 1 Control register 2	R/W	- 0000 в
0026н	Reserved			
0027				
0028н	SMC	Serial mode control register	R/W	00000-00 в
0029н	SRC	Serial rate control register	R/W	- - 011000 в
002Ан	SSD	Serial status and data register	R/W	00100-1 ${ }^{\text {¢ }}$ в
002B	SIDR	Serial input data register	R	X X X X X X в
	SODR	Serial output data register	W	XXXXXXXX в
002CH	UPC	Clock division selection register	R/W	- 0010 в
002Dh to 002FH	Reserved			
0030н	ADC1	A/D control register 1	R/W	-0000000 в
0031н	ADC2	A/D control register 2	R/W	- 0000001 в
0032н	ADDH	A/D data register H	R	- - - - ${ }^{\text {X X }}$ в
0033н	ADDL	A/D data register L	R	XXXXXXXX
0034н	ADEN	A/D enable register	R/W	00000000 в
0035	Reserved			
0036н	EIE2	External interrupt 2 control register1	R/W	00000000 в
0037 ${ }_{\text {H }}$	EIF2	External interrupt 2 control register2	R/W	- - - - 0 в
0038н	Reserved			
0039н	SMR	Serial mode register	R/W	00000000 в
003Ан	SDR	Serial data register	R/W	XXXXXXX ${ }_{\text {в }}$
003Вн	SSEL	Serial function switching register	R/W	\cdots - - - 0 в
003C ${ }_{\text {H }}$ to 003FH	Reserved			
0040н	WRARH0	Upper-address setting register 0	R/W	XXXXXXXX ${ }^{\text {¢ }}$
0041H	WRARLO	Lower-address setting register 0	R/W	XXXXXXXX
0042н	WRDR0	Data setting register 0	R/W	
0043н	WRARH1	Upper-address setting register 1	R/W	XXXXXXXX
0044H	WRARL1	Lower-address setting register 1	R/W	XXXXXXX в
0045 ${ }_{\text {H }}$	WRDR1	Data setting register 1	R/W	XXXXXXXX
0046н	WREN	Address comparison EN register	R/W	XXXXXX00 в
0047н	WROR	Wild-register data test register	R/W	- - - 00 в
0048 to 005FH	Reserved			

(Continued)

MB89202R Series

(Continued)

Address	Register name	Register description	Read/write	Initial value
0060н	PDR6	Port 6 data register	R/W	X X в
0061н	DDR6	Port 6 data direction register*	R/W	- - - 00
0062н	PUL6	Port 6 pull-up setting register*	R/W	- 00 в
0063н	PDR7	Port 7 data register	R/W	- X X ${ }^{\text {в }}$
0064н	DDR7	Port 7 data direction register	R/W	- 000 в
0065н	PUL7	Port 7 pull-up setting register	R/W	000
0066н to 006Fн	Reserved			
0070н	PUL0	Port 0 pull-up setting register	R/W	00000000 в
0071н	PUL3	Port 3 pull-up setting register	R/W	00000000 в
0072н	PUL5	Port 5 pull-up setting register	R/W	0
0073 to 0078 ${ }^{\text {H }}$	Reserved			
0079н	FMCS	Flash memory control status register	R/W	000 X - -
007Ан	Reserved			
007Вн	ILR1	Interrupt level setting register1	W	11111111
007С ${ }_{\text {н }}$	ILR2	Interrupt level setting register2	W	111111118
007D	ILR3	Interrupt level setting register3	W	11111111
007Ен	ILR4	Interrupt level setting register4	W	11111111
007F	ITR	Interrupt test register	Not available	$\cdots{ }^{-\cdots} 008$

- : Unused, X : Undefined
* : No used in MB89F202RA/F202RAY

Note: Do not use prohibited areas.

MB89202R Series

- ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*	Vcc	Vss - 0.3	Vss +6.0	V	
Input voltage*	V	Vss - 0.3	V cc +0.3	V	
Output voltage*	Vo	Vss -0.3	V cc +6.0	V	
"L" level maximum output current	loL	-	15	mA	
"L" level average output current	lolav1	-	4	mA	Average value (operating current \times operating rate) Pins excluding P40 to P43, P70 to P72
	lolav2	-	12	mA	Average value (operating current \times operating rate) Pins P40 to P43, P70 to P72
"L" level total maximum output current	Elo	-	100	mA	
" H " level maximum output current	Іон	-	-10	mA	Pins excluding P60, P61
"H" level average output current	lohav	-	-4	mA	Average value (operating current \times operating rate)
"H" level total maximum output current	Eloh	-	-50	mA	
Power consumption	Pd	-	200	mW	
Operating temperature	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*: This parameter is based on $\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}$.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89202R Series

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	2.2	5.5	V	MB89202/202Y
		3.5	5.5	V	MB89F202RA/F202RAY
		2.7	5.5	V	MB89V201
		1.5	5.5	V	Retains the RAM state in stop mode
"H" level input voltage	VIH	0.7 Vcc	$\mathrm{V} \mathrm{cc}+0.3$	V	P00 to P07, P31, P37, P40 to P43, P50, P60, P61, P70 to P72
	$\mathrm{V}_{\text {IHs }}$	0.8 Vcc	V cc +0.3	V	$\overline{\mathrm{RST}}{ }^{*}$, EC, $\overline{\mathrm{INT} 20}$ to $\overline{\mathrm{NNT27}, ~ U C K / S C K, ~}$ INT10 to INT12, P30, P32 to P36, UI/SI
"L" level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	```P00 to P07, P31, P37, P40 to P43, P50, P60, P61, P70 to P72```
	VILs	Vss - 0.3	0.2 Vcc	V	RST, EC, INT20 to INT27, UCK/SCK, INT10 to INT12, P30, P32 to P36, UI/SI
Open-drain output pin application voltage	V	Vss - 0.3	V cc +0.3	V	P40 to P43, RST
Operating temperature	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	Room temperature is recommended for programming the flash memory on MB89F202RA/F202RAY

* : $\overline{\text { RST }}$ acts as high voltage supply for the flash memory during program and erase on MB89F202RA/F202RAY. It can tolerate high voltage input. Please check section "6. Flash Memory Program/Erase Characteristics".

MB89202R Series

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

MB89202R Series

3. DC Characteristics

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
" H " level input voltage	V_{1}	```P00 to P07, P31, P37, P40 to P43, P50, P60, P61, P70 to P72```	-	0.7 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V	
	$\mathrm{V}_{\text {Ifs }}$	P30, P32 to P36, $\overline{\text { RST }}{ }^{*}$ UCK/SCK, UI/SI, EC, INT20 to INT27, INT10 to INT12	-	0.8 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V	
"L" level input voltage	VIL	```P00 to P07, P31, P37, P40 to P43, P50, P60, P61, P70 to P72```	-	Vss -0.3	-	0.3 Vcc	V	
	Vıss	P30, P32 to P36, $\overline{\text { RST }}$, UCK/SCK, UI/SI, EC, INT20 to INT27, INT10 to INT12	-	Vss -0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P40 to P43, RST	-	Vss - 0.3	-	V cc +0.3	V	
"H" level output voltage	Vон	$\begin{aligned} & \text { P00 to P07, P30 to P37, } \\ & \text { P40 to P43, P50, } \\ & \text { P70 to P72 } \end{aligned}$	I он $=-4.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level output voltage	Volı	$\begin{aligned} & \text { P00 to P07, P30 to P37, } \\ & \text { P50, } \overline{\text { RST }} \end{aligned}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	VoL2	P40 to P43, P70 to P72	$\mathrm{loL}=12.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current	1 L	```P00 to P07, P30 to P37, P40 to P43, P50 , P60, P61, RST, P70 to P72```	$0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor
Pull-up resistance	Rpull	P00 to P07, P30 to P37, P50, RST, P70 to P72	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$k \Omega$	$\begin{aligned} & \text { MB89202/ } \\ & 202 \mathrm{Y} \end{aligned}$
		$\begin{aligned} & \text { P00 to P07, P30 to P37, } \\ & \text { P50, P70 to P72 } \end{aligned}$						$\begin{aligned} & \text { MB89F202 } \\ & \text { RA/ } \\ & \text { F202RAY } \end{aligned}$
								(Continued)

MB89202R Series

(Continued)

Parameter	Symbol	Pin name		Condition	Value			Unit	Remarks	
				Min	Typ	Max				
Power supply current	Icc	Vcc	Normal operation mode (External clock, highest gear speed)		When A/D converter stops	-	8	12	mA	$\begin{aligned} & \text { MB89202/ } \\ & 202 Y \end{aligned}$
				-		6	9	mA	$\begin{array}{\|l\|} \hline \text { MB89F202 } \\ \text { RA/ } \\ \text { F202RAY } \end{array}$	
				When A/D converter starts	-	10	15	mA	$\begin{aligned} & \hline \text { MB89202/ } \\ & \text { 202Y } \end{aligned}$	
					-	8	12	mA	MB89F202 RA/ F202RAY	
	Icos		Sleep mode (External clock, highest gear speed)	When A/D converter stops	-	4	6	mA	$\begin{aligned} & \hline \text { MB89202/ } \\ & 202 \mathrm{Y} \end{aligned}$	
					-	3	5	mA	$\begin{array}{\|l\|} \hline \text { MB89F202 } \\ \text { RA/ } \\ \text { F202RAY } \\ \hline \end{array}$	
	Icch		Stop mode $\mathrm{Ta}=+25^{\circ} \mathrm{C}$ (External clock)	When A/D converter stops	-	-	1	$\mu \mathrm{A}$	$\begin{aligned} & \hline \text { MB89202/ } \\ & \text { 202Y } \end{aligned}$	
					-	-	10	$\mu \mathrm{A}$	$\begin{array}{\|l} \hline \text { MB89F202 } \\ \text { RA/ } \\ \text { F202RAY } \\ \hline \end{array}$	
Input capacitance	Cin	Other than C, Vcc, Vss		-	-	10	-	pF		

* : $\overline{\text { RST }}$ acts as high voltage supply for the flash memory during program and erase on MB89F202RA/F202RAY. It can tolerate high voltage input. Please check section "6. Flash Memory Program/Erase Characteristics".

MB89202R Series

4. AC Characteristics

(1) Reset Timing
(Vss $=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Value		Unit
			Min	Max	
$\overline{\text { RST }}$ "L" pulse width	tzızH	-	45	-	ns
Internal reset pulse extension	tirst	-	48 thcyı*	-	ns

* : thcyı 1 oscillating clock cycle time

Note: If the reset pulse applied to the external reset pin ($\overline{\mathrm{RST}})$ does not meet the specifications, it may cause malfunctions. Use caution so that the reset pulse less than the specifications will not be fed to the external reset pin ($\overline{\mathrm{RST}}$).
(2) Power-on Reset

$$
\left(\mathrm{V} \text { ss }=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
Power supply rising time	tr	-	-	50	ms	
			1	-	ms	Due to repeated operations

Note: : The supply voltage must be set to the minimum value required for operation within the prescribed default oscillation settling time.

MB89202R Series

(3) Clock Timing
$\left(\mathrm{V}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit
			Min	Max	
Clock frequency	Fсн	-	1	12.5	MHz
Clock cycle time	txcy		80	1000	ns
Input clock pulse width	$\begin{aligned} & \text { twh } \\ & \text { twL } \end{aligned}$		20	-	ns
Input clock rising/falling time	$\begin{aligned} & \text { tcr } \\ & \text { tcc } \end{aligned}$		-	10	ns

- X0 and X1 Timing and Conditions

- Main Clock Conditions

When a crystal or ceramic resonator is used

When an exernal clock is used

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{F}_{\text {cH, }} 8 / \mathrm{F}_{\mathrm{CH}}, 16 / \mathrm{F}_{\mathrm{CH}}, 64 / \mathrm{F}_{\mathrm{CH}}$	$\mu \mathrm{s}$	tiNST $=0.32 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=12.5 \mathrm{MHz}\left(4 / \mathrm{F}_{\mathrm{CH}}\right)$

MB89202R Series

(5) Peripheral Input Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value		Unit
			Min	Max	
Peripheral input "H" pulse width	tıuн	INT10 to INT12, INT20 to INT27, EC	2 tinst*	-	$\mu \mathrm{s}$
Peripheral input "L" pulse width	tıHL		2 tinst*	-	$\mu \mathrm{s}$

*: For information on tinst see " (4) Instruction Cycle".

INT10 to INT12, $\overline{\text { INT20 to } \overline{\text { INT27, }} \text { EC }}$

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit
			Min	Typ	Max	
Peripheral input " H " noise limit	tinnc	$\begin{gathered} \text { P00 to P07, P30 to P37, } \\ \text { P40 to P43, } \\ \text { P50,P60,P61, } \\ \text { P70 to P72, } \overline{\text { RST, }} \text {, EC, } \\ \text { INT20 to INT27, } \\ \text { INT10 to INT12 } \end{gathered}$	-	45	-	ns
Peripheral input "L" noise limit	tınc		-	45	-	ns

P00 to P07, P30 to P37,
P40 to P43, P50,
P60, P61, P70 to P72,
$\overline{\mathrm{RST}}, \mathrm{EC}, \overline{\mathrm{INT} 20}$ to $\overline{\mathrm{NT} 27}$,
INT10 to INT12 \qquad

MB89202R Series

(6) UART, Serial I/O Timing

$$
\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	UCK/SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$
UCK/SCK $\downarrow \rightarrow$ SO time	tslov	UCK/SCK, SO		-200	+200	ns
Valid SI \rightarrow UCK/SCK \uparrow	tivsh	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{S}$
UCK/SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{S}$
Serial clock "H" pulse width	tshsL	UCK/SCK	External shift clock mode	tinst*	-	$\mu \mathrm{s}$
Serial clock "L" pulse width	tsLSH	UCK/SCK		tinst*	-	$\mu \mathrm{s}$
UCK/SCK $\downarrow \rightarrow$ SO time	tslov	UCK/SCK, SO		0	200	ns
Valid SI \rightarrow UCK/SCK	tivsh	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$
UCK/SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$

*: For information on tinst, see " (4) Instruction Cycle".

- Internal Shift Clock Mode

- External Shift Clock Mode

MB89202R Series

5. A/D Converter

(1) A/D Converter Electrical Characteristics
(Vss $=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Resolution	-	-	-	10	bit
Total error		-5.0	-	+5.0	LSB
Linearity error		-3.0	-	+3.0	LSB
Differential linearity error		-2.5	-	+2.5	LSB
Zero transition voltage	Vot	Vss - 3.5 LSB	Vss +0.5 LSB	Vss +4.5 LSB	V
Full-scale transition voltage	$V_{\text {FST }}$	Vcc - 6.5 LSB	Vcc-1.5 LSB	Vcc +2.0 LSB	V
A/D mode conversion time	-	-	-	38 tinst*	$\mu \mathrm{s}$
Analog port input current	IAIN	-	-	10	$\mu \mathrm{A}$
Analog input voltage range	-	0	-	Vcc	V
Power supply voltage for A/D accuracy assurance	Vcc	4.5	-	5.5	V

*: For information on tinst, see " (4) Instruction Cycle" in "4. AC Characteristics."

MB89202R Series

(2) A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A/D converter
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit : LSB)

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") from actual conversion characteristics

- Differential linearity error (unit : LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit : LSB)

The difference between theoretical and actual conversion values

(Continued)

MB89202R Series

(Continued)

MB89202R Series

(3) Notes on Using A/D Converter

- About the external impedance of analog input and its sampling time
- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.
- Analog input circuit model

Analog input

Note: The values are reference values.

MB89202/202Y MB89F202RA/F202RAY

R $2.2 \mathrm{k} \Omega$ (Max) $\quad 45 \mathrm{pF}$ (Max) $2.0 \mathrm{k} \Omega$ (Max) 16 pF (Max)

- To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
- The relationship between the external impedance and minimum sampling time
[External impedance $=0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$]

[External impedance $=0 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$]

- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

- About errors

As $\mid \mathrm{V}$ cc - $\mathrm{V} \mathrm{ss} \mid$ becomes smaller, values of relative errors grow larger.

MB89202R Series

6. Flash Memory Program/Erase Characteristics

Parameter	Value			Unit	Remarks	
	Min	Typ	Max			
Chip erase time (16 Kbytes)	-	$0.5^{{ }^{1}}$	$7.5^{5^{2}}$	s	Excludes programming prior to erasure	
Byte programming time	-	32	3600	$\mu \mathrm{~s}$	Excludes system-level overhead	
Program/Erase cycle	10,000	-	-	cycle		
High voltage source on RST	-	12.00	-	V	High voltage must be applied to $\overline{\text { RST }}$ during flash memory program / erase	

${ }^{*} 1: \mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}, 10,000$ cycles
*2: $\mathrm{Ta}=+85^{\circ} \mathrm{C}, \mathrm{Vcc}=2.7 \mathrm{~V}, 10,000$ cycles

MB89202R Series

EXAMPLE CHARACTERISTICS

1. Power supply current

- MB89202/202Y/F202RA/F202RAY : 4 MHz (when external clock are used)

MB89202R Series

- MB89202/202Y/F202RA/F202RAY : 8 MHz (when external clock are used)

MB89202R Series

- MB89202/202Y/F202RA/F202RAY : 12.5 MHz (when external clock is used)

MB89202R Series

- MB89202/202Y/F202RA/F202RAY : 12.5 MHz (when external clock is used)

MB89202/202Y
Stop mode ($\mathrm{Icch}-\mathrm{Ta}$)

MB89F202RA/F202RAY
Stop mode ($\mathrm{Icch}-\mathrm{Ta}$)

MB89202R Series

2. "L" level output voltage

3. "H" level output voltage

MB89202R Series

MASK OPTIONS

No.	Part number	$\begin{aligned} & \text { MB89202 } \\ & \text { MB89202Y } \end{aligned}$	$\begin{aligned} & \text { MB89F202RA } \\ & \text { MB89F202RAY } \end{aligned}$	MB89V201
	Specified / Fixed	Specified when ordering masking	Fixed	
1		Selectable	Fixed to $2^{18} / \mathrm{F}_{\text {ch }}$	Fixed to $2^{18} /$ Fch
2	Reset pin output With reset output Without reset output	Selectable	With reset output	With reset output
3	Power on reset selection With power on reset Without power on reset	Selectable	With power on reset	With power on reset

$\mathrm{F}_{\text {ch }}$: Main clock oscillation frequency
*: Initial value to which the oscillation settling time bit (SYCC : WT1, WTO) in the system clock control register is set
Note:

- Notes on selecting mask option

Please select "With reset output" by the mask option when power-on reset is generated at the power supply ON, and the device is used without inputting external reset.

■ ORDERING INFORMATION

Part number	Package
MB89202P-SH	32-pin plastic SH-DIP (DIP-32P-M06)
MB89F202RAP-SH	34-pin plastic SSOP (FPT-34P-M03)
MB89202YPFV	64-pin plastic LQFP (FPT-64P-M24)
MB89F202RAYPFV	
MB89V201PMC1*	

*: The evaluation chip is supplied only for MB2144-230.

MB89202R Series

PACKAGE DIMENSIONS

32-pin plastic SH-DIP	Lead pitch	1.778 mm
	Low space	10.16 mm
Sealing method	Plastic mold	
(DIP-32P-M06)		

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)

MB89202R Series

(Continued)

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/package/en-search/

MB89202R Series

MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
-	-	Changed the series name; MB89202RA series \rightarrow MB89202R series
-	-	Added the part numbers. MB89202Y, MB89F202RAY
-	-	Changed the package code. FPT-64P-M03 \rightarrow FPT-64P-M24
4	■PACKAGE AND CORRESPONDING PRODUCTS	Changed the corresponding products of the FPT-34P- M03 package MB89202, MB89F202RA \rightarrow MB89202Y, MB89F202RAY
13	■ PROGRAMMING AND ERASE FLASH MEMORY	Deleted the "6. Flash Programmer Adapter and Recom- mended Flash Programmers"
42	ORDERING INFORMATION	Changed the order information. MB89F202RAP-G-SHE1 \rightarrow MB89F202RAP-SH MB89202PFV \rightarrow MB89202YPFV MB89F202RAPFV-GE1 \rightarrow MB89F202RAYPFV

The vertical lines marked in the left side of the page show the changes.

MB89202R Series

MB89202R Series

MEMO

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome,
Shinjuku-ku, Tokyo 163-0722, Japan
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387
http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax:+1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD.
206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://kr.fujitsu.com/fmk/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, \#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.
Rm. 3102, Bund Center, No. 222 Yan An Road (E),
Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fmc/
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel : +852-2377-0226 Fax : +852-2376-3269
http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

[^0]: *: Check section "Memory Space"

