

Product brief

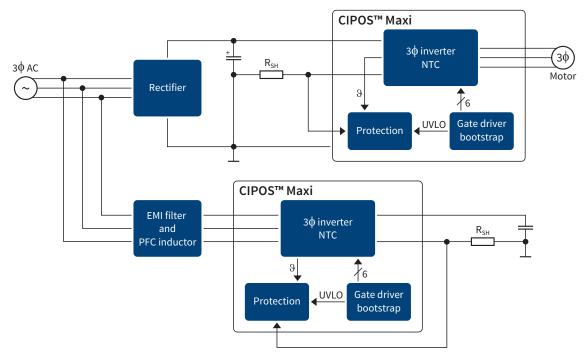
CIPOS[™] Maxi IPM IM818 series 1200 V/5–10 A

Infineon's high-performance CIPOS[™] Maxi Intelligent Power Modules (IPMs) integrate various power and control components to increase reliability, optimize PCB size and system costs. It is designed to control three-phase AC motors and permanent magnet motors in variable speed drives applications such as low-power motor drives, pumps, fan drives and active filters for HVAC (heating, ventilation, and air conditioning). The existing portfolio offers 5 A and 10 A in 1200 V class up to 1.8 kW power rating. The smallest package in 1200 V IPM class offers highest power density and best performance in its class.

IM818 is the first 1200 V IPM that integrated an optimized 6-channel SOI gate driver to provide built-in deadtime that prevents damage from transients. The product concept is especially adapted to power applications, which require excellent thermal performance and electrical isolation as well as meeting EMI requirements and overload protection.

Applications

- > Pumps
- > Blowers
- > Fan motors
- > Active filter (active power factor correction) for HVAC
- > Low-power general purpose drives (GPI, servo drives)


Key features

- Totally isolated dual-in-line molded module with DCB
- > Application-specific performance
- > 1200 V TRENCHSTOP[™] IGBT 4
- Rugged 1200 V SOI gate driver technology with protection against transients
- > Allowable negative V_S potential up to -11 V for signal transmission at V_{BS} = 15 V
- Integrated bootstrap functionality
- > Overcurrent shutdown
- > Undervoltage lockout at all channels
- > All of six switches turn off during protection
- > Cross-conduction prevention
- Low-side emitter pins accessible for all phase current monitoring (open emitter)
- > Programmable fault clear timing
- > Enable input
- > UL-certified thermistor (85 kΩ)
- > Lead-free terminal plating, RoHS-compliant

Intelligent Power Modules (IPM) 1200 V/5-10 A

Block diagram

Product	Package	Voltage [V]	Nominal current @ 25 °C [A]	Nominal current @ 80 °C [A]	Power up to [kW]	T _{jmax} [°C]	Remark
IM818-SCC	DIP 36X23D	1200	8	5	1.2	150	-
IM818-MCC	DIP 36X23D	1200	16	10	1.8	150	-

Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Please note!

THIS DOCUMENT IS FOR INFORMATION PURPOSES ONLY AND ANY INFORMATION GIVEN HEREIN SHALL IN NO EVENT BE REGARDED AS A WARRANTY, GUARANTEE OR DESCRIPTION OF ANY FUNCTIONALITY, CONDITIONS AND/OR QUALITY OF OUR PRODUCTS OR ANY SUITABILITY FOR A PARTICULAR PURPOSE. WITH REGARD TO THE TECHNICAL SPECIFICATIONS OF OUR PRODUCTS, WE KINDLY ASK YOU TO REFER TO THE RELEVANT PRODUCT DATA SHEETS PROVIDED BY US. OUR CUSTOMERS AND THEIR TECHNICAL DEPARTMENTS ARE REQUIRED TO EVALUATE THE SUITABILITY OF OUR PRODUCTS FOR THE INTENDED APPLICATION.

WE RESERVE THE RIGHT TO CHANGE THIS DOCUMENT AND/OR THE INFORMATION GIVEN HEREIN AT ANY TIME.

Additional information

For further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices, please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements, our products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by authorized representatives of Infineon Technologies, our products may not be used in any lifeendangering applications, including but not limited to medical, nuclear, military, life-critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.

CIPOS™ Maxi IM818

IM818-MCC

Description

The CIPOS[™] Maxi IM818 product group offers the chance for integrating various power and control components to increase reliability, optimize PCB size and system costs. It is designed to control three phase AC motors and permanent magnet motors in variable speed drives applications such as low power motor drives (GPI, Servo drives), pumps, fan drives and active filter for HVAC(Heating, Ventilation, and Air Conditioning). The product concept is specially adapted to power applications, which need good thermal performance and electrical isolation as well as EMI save control and overload protection.

Three phase inverter with 1200V TRENCHSTOP[™] IGBTs and Emitter Controlled diodes are combined with an optimized 6-channel SOI gate driver for excellent electrical performance.

Features

- Fully isolated Dual In-Line molded module
- 1200V TRENCHSTOP[™] IGBT4
- Rugged 1200V SOI gate driver technology with stability against transient and negative voltage
- Allowable negative VS potential up to -11 V for signal transmission at VBS = 15 V
- Integrated bootstrap functionality
- Over current shutdown
- Built-in NTC thermistor for temperature monitor
- Under-voltage lockout at all channels
- Low side emitter pins accessible for all phase current monitoring (open emitter)
- Cross-conduction prevention
- All of 6 switches turn off during protection
- Programmable fault clear timing and enable input
- Lead-free terminal plating; RoHS compliant

Potential applications


Fan drives and active filter for HVAC, pumps, and low power motor drives (GPI, Servo Drives)

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Table 1 Product Information

Dreduct Name		Standa	ard Pack	Domark	
Product Name	Package Type	Form	MOQ	Remark	
IM818-MCC	DIP 36x23D	14 pcs / tube	280		

Table of Contents

Desc	ription	L
Featu	ures 1	L
Pote	ntial applications 1	Ĺ
Prod	uct validation 1	Ĺ
Table	e of Contents	2
1	Internal Electrical Schematic	3
2	Pin Configuration	
2.1	Pin Assignment	1
2.2	Pin Description	5
3	Absolute Maximum Ratings	7
3.1	Module Section	
3.2	Inverter Section	
3.3	Control Section7	
4	Thermal Characteirstics	
5	Recommended Operation Conditions)
6	Static Parameters10	
6.1	Inverter Section	
6.2	Control Section	
7	Dynamic Parameters11	
7.1	Inverter Section	
7.2	Control Section	
8	Thermistor Characteristics12	
9	Mechanical Characteristics and Ratings13	3
10	Qualification Information14	ł
11	Diagrams and Tables15	5
11.1	T _c Measurement Point15	
11.2	Backside Curvature Measurement Point15	
11.3	Switching Time Definition16	3
12	Application Guide17	
12.1	Typical Application Schematic	
12.2	Performance Charts	
13	Package Outline)
Revis	sion history)

Internal Electrical Schematic

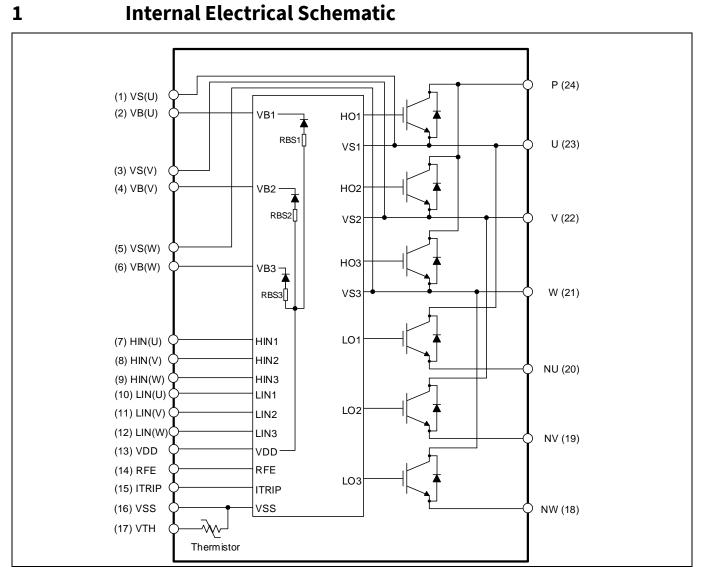
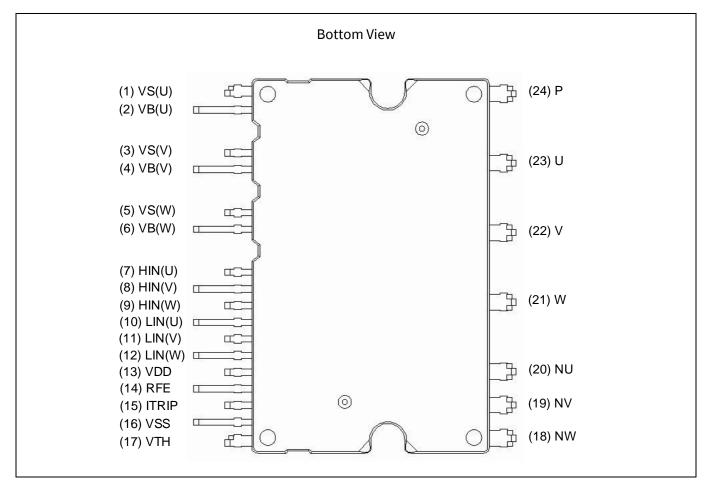


Figure 1 Internal electrical schematic


IM818-MCC

Pin Configuration

2 Pin Configuration

2.1 Pin Assignment

Figure 2 Module pinout

Table 2Pin Assignment

Pin Number	Pin name	Pin Description
1	VS(U)	U-phase high side floating IC supply offset voltage
2	VB(U)	U-phase high side floating IC supply voltage
3	VS(V)	V-phase high side floating IC supply offset voltage
4	VB(V)	V-phase high side floating IC supply voltage
5	VS(W)	W-phase high side floating IC supply offset voltage
6	VB(W)	W-phase high side floating IC supply voltage
7	HIN(U)	U-phase high side gate driver input
8	HIN(V)	V-phase high side gate driver input
9	HIN(W)	W-phase high side gate driver input
10	LIN(U)	U-phase low side gate driver input
11	LIN(V)	V-phase low side gate driver input
12	LIN(W)	W-phase low side gate driver input
13	VDD	Low side control supply

IM818-MCC

Pin Configuration

Pin Number	Pin name	Pin Description
14	RFE	Programmable fault clear time, fault output, enable input
15	ITRIP	Over current shutdown input
16	VSS	Low side control negative supply
17	VTH	Thermistor
18	NW	W-phase low side emitter
19	NV	V-phase low side emitter
20	NU	U-phase low side emitter
21	W	Motor W-phase output
22	V	Motor V-phase output
23	U	Motor U-phase output
24	Р	Positive bus input voltage

2.2 Pin Description

HIN(U, V, W) and LIN(U, V, W) (Low side and high side control pins, Pin 7 - 12)

These pins are positive logic and they are responsible for the control of the integrated IGBTs. The schmitt-trigger input thresholds of them are such to guarantee LSTTL and CMOS compatibility down to 3.3 V controller outputs. Pull-down resistor of about 5 k Ω is internally provided to pre-bias inputs during supply start-up. Input schmitt-trigger and noise filter provide beneficial noise rejection to short input pulses.

The noise filter suppresses control pulses which are below the filter time $t_{\text{FIL,IN}}$. The filter acts according to Figure 4.

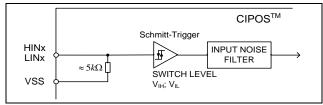
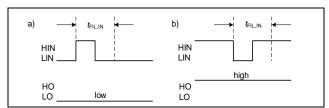



Figure 3 Input pin structure

It is not recommended for proper work to provide input pulse-width lower than 1 µs.

The integrated gate driver provides additionally a shoot through prevention capability which avoids the simultaneous on-state of two gate drivers of the same leg (i.e. HO1 and LO1, HO2 and LO2, HO3 and LO3). When two inputs of a same leg are activated, only former activated one is activated so that the leg is kept steadily in a safe state.

A minimum deadtime insertion of typically 360 ns is also provided by driver IC, in order to reduce crossconduction of the external power switches.

RFE (Fault / Fault clear time / Enable, Pin 14)

The RFE pin conbines three functions in one pin: programmable fault clear time by RC-network, faultout and enable input.

The programmable fault-clear time can be adjusted by RC network, which is external pull-up resistor and capacitor. For example, typical value is about 1ms at $1 \text{ M}\Omega$ and 2 nF.

The fault-out indicates a module failure in case of under voltage at pin VDD or in case of triggered over current detection at ITRIP.

The microcontroller can pull this pin low to disable the IPM functionality. This is enable function.

IM818-MCC

Pin Configuration

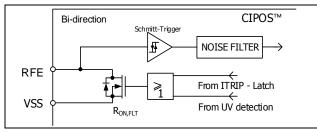


Figure 5 Internal circuit at pin RFE

VTH (Thermistor, Pin 17)

The VTH pin provides direct access to the NTC, which is referenced to VSS. An external pull-up resistor connected to +5 V ensures that the resulting voltage can be directly connected to the microcontroller.

ITRIP (Over current detection function, Pin 15)

IM818 provides an over current detection function by connecting the ITRIP input with the IGBT collector current feedback. The ITRIP comparator threshold (typ. 0.5 V) is referenced to VSS ground. An input noise filter (t_{ITRIP} = typ. 500 ns) prevents the driver to detect false over-current events.

Over current detection generates a shutdown of all outputs of the gate driver after the shutdown propagation delay of typically 1µs.

Fault-clear time is set to typical 1.1ms at R_{RCIN} = 1 M Ω and C_{RCIN} = 2 nF.

VDD, VSS (Low side control supply and reference, Pin 13, 16)

VDD is the control supply and it provides power both to input logic and to output power stage. Input logic is referenced to VSS ground.

The under-voltage circuit enables the device to operate at power on when a supply voltage of at least a typical voltage of $V_{DDUV+} = 12.2$ V is present.

The IC shuts down all the gate drivers power outputs, when the VDD supply voltage is below $V_{DDUV} = 11.2$ V. This prevents the external power switches from critically low gate voltage levels during on-state and therefore from excessive power dissipation.

VB(U, V, W) and VS(U, V, W) (High side supplies, Pin 1 - 6)

VB to VS is the high side supply voltage. The high side circuit can float with respect to VSS following the external high side power device emitter voltage.

Due to the low power consumption, the floating driver stage is supplied by integrated bootstrap circuit.

The under-voltage detection operates with a rising supply threshold of typical $V_{BSUV+} = 11.2$ V and a falling threshold of $V_{BSUV-} = 10.2$ V.

VS(U, V, W) provide a high robustness against negative voltage in respect of VSS of -50 V transiently. This ensures very stable designs even under rough conditions.

NW, NV, NU (Low side emitter, Pin 18 - 20)

The low side emitters are available for current measurements of each phase leg. It is recommended to keep the connection to pin VSS as short as possible in order to avoid unnecessary inductive voltage drops.

W, V, U (High side emitter and low side collector, Pin 21 - 23)

These pins are motor U, V, W input pins.

P (Positive bus input voltage, Pin 24)

The high side IGBTs are connected to the bus voltage. It is noted that the bus voltage does not exceed 900 V.

IM818-MCC

3

Absolute Maximum Ratings

Absolute Maximum Ratings

(V_{DD} = 15V and T_J = 25°C, if not stated otherwise)

3.1 Module Section

Description	Symbol	Condition	Value	Unit
Storage temperature range	T _{STG}		-40 ~ 125	°C
Operating case temperature	T _c	Refer to Figure 6	-40 ~ 125	°C
Operating junction temperature	TJ		-40 ~150	°C
Isolation test voltage	V _{ISO}	1min, RMS, f = 60Hz	2500	V

3.2 Inverter Section

Description	Symbol	Condition	Value	Unit	
Max. blocking voltage	V_{CES}/V_{RRM}		1200	V	
DC link supply voltage of P-N	V _{PN}	Applied between P-N	900	V	
DC link supply voltage (surge) of P-N	$V_{PN(surge)}$	Applied between P-N	1000	V	
		T _c = 25°C, T _J < 150°C	±16	- A	
DC collector current	lc	T _c = 80°C, T _J < 150°C	±10		
Peak collector current	I _{CP}	T _c = 25°C, t _p < 1 ms	±20	А	
Power dissipation per IGBT	P _{tot}		67.5	W	
Short circuit withstand time ¹	t _{sc}	$V_{DC} \le 800 \text{ V}, \text{ T}_{J} = 150^{\circ}\text{C}$	10	μs	

3.3 Control Section

Description	Symbol	Condition	Value	Unit
High Side offset voltage	Vs		1200	V
Repetitive peak reverse voltage of bootstrap diode	V _{RRM}		1200	V
Module control supply voltage	V _{DD}		-1 ~ 20	V
High side floating supply voltage (V _B reference to V _S)	V _{BS}		-1 ~ 20	V
Input voltage(LIN, HIN, ITRIP, RFE)	V _{IN}		$-1 \sim V_{DD} + 0.3$	V

¹ Allowed number of short circuits: < 1000; Time between short circuits: > 1 s. Datasheet 7 of 21

IM818-MCC

Thermal Characteirstics

4

Thermal Characteirstics

Description	Cumhal	Condition	Value			Unit	
Description	Symbol	Condition	Min.	Тур.	Max.	Unit	
Single IGBT thermal resistance, junction-case	R_{thJC}	High side V-phase IGBT	-	-	1.85	K/W	
Single diode thermal resistance, junction-case	$R_{thJC,D}$	High side V-phase diode	-	-	2.50	K/W	

IM818-MCC

Recommended Operation Conditions

5

Recommended Operation Conditions

All voltages are absolute voltages referenced to V_{ss} -potential unless otherwise specified.

	Combal		Value	11	
Description	Symbol	Symbol Min.		Max.	Unit
DC link supply voltage of P-N	V _{PN}	350	600	800	V
Low side supply voltage	V _{DD}	13.5	15	18.5	V
High side floating supply voltage (V _B vs. V _S)	V _{BS}	12.5	-	18.5	V
Logic input voltages LIN, HIN, ITRIP, RFE	V _{IN}	0	-	5	V
PWM carrier frequency	F _{PWM}	-	-	20	kHz
External dead time between HIN & LIN	DT	0.5	-	-	μs
Voltage between VSS - N (including surge)	V _{COMP}	-5	-	5	V
Minimum input pulse width	PW _{IN(ON)} PW _{IN(OFF)}	1	-	-	μs
Control supply variation	$\Delta V_{BS,}$ ΔV_{DD}	-1 -1	-	1 1	V/µs

6 Static Parameters

 $(V_{DD} = 15V \text{ and } T_J = 25^{\circ}C, \text{ if not stated otherwise})$

6.1 Inverter Section

Description	Symphol	Condition	Value			11
Description	Symbol	Condition	Min.	Тур.	Max.	Unit
		I _c =10 A				
Collector-Emitter saturation voltage	$V_{CE(sat)}$	T」= 25°C	-	2.0	2.4	V
		150°C	-	2.6	-	
Collector-Emitter leakage current	I _{CES}	V _{CE} = 1200 V	-	-	1	mA
		I _F = 10 A				
Diode forward voltage	VF	T」= 25°C	-	1.75	2.25	V
		150°C	-	1.75	-	

6.2 Control Section

Description	C			Value			
Description	Symbol	Condition	Min.	Тур.	Max.	Unit	
Logic "1" input voltage (LIN, HIN)	VIH		-	1.9	2.3	V	
Logic "0" input voltage (LIN, HIN)	VIL		0.7	0.9	-	V	
ITRIP positive going threshold	$V_{\text{IT,TH}+}$		475	500	525	mV	
ITRIP input hysteresis	$V_{\text{IT},\text{HYS}}$		-	55	-	mV	
V_{DD} and V_{BS} supply under voltage positive going threshold	V _{DDUV+} V _{BSUV+}		11.5 10.5	12.2 11.2	13.0 12.0	V	
V_{DD} / V_{BS} supply under voltage negative going threshold	V _{DDUV-} V _{BSUV-}		10.5 9.5	11.2 10.2	12.0 11.0	V	
V _{DD} / V _{BS} supply under voltage lockout hysteresis	V _{dduvh} V _{bsuvh}		-	1	-	V	
Quiescent V_{Bx} supply current (V_{Bx} only)	I _{QBS}	$H_{IN} = 0 V$	-	175	-	μΑ	
Quiescent V_{DD} supply current (V_{DD} only)	I _{QDD}	$L_{IN} = 0 V, H_{INX} = 5 V$	-	1	-	mA	
Input bias current for LIN, HIN	I _{IN+}	$V_{IN} = 5 V$	-	1	-	mA	
Input bias current for ITRIP	I _{ITRIP+}	$V_{\text{ITRIP}} = 5 \text{ V}$	-	30	100	μA	
Input bias current for RFE	I _{RFE}	$V_{RFE} = 5 V,$ $V_{ITRIP} = 0 V$	-	-	5	μΑ	
RFE output voltage	V_{RFE}	$I_{RFE} = 10 \text{ mA},$ $V_{ITRIP} = 1 \text{ V}$	-	0.4	-	V	
V _{RFE} positive going threshold	V _{RFE,TH+}		-	1.9	2.3	V	
V _{RFE} negative going threshold	V _{RFE,TH-}		0.7	0.9	-	V	
Bootstrap diode forward voltage	V_{F_BSD}	I _F = 0.3 mA	-	0.9	-	V	
Bootstrap diode resistance	R _{BSD}	Between $V_F = 4 V$ and $V_F = 5 V$	-	120	-	Ω	

CIPOS™ Maxi IM818

IM818-MCC

7

Dynamic Parameters

Dynamic Parameters

(V_{DD} = 15V and T_J = 25°C, if not stated otherwise)

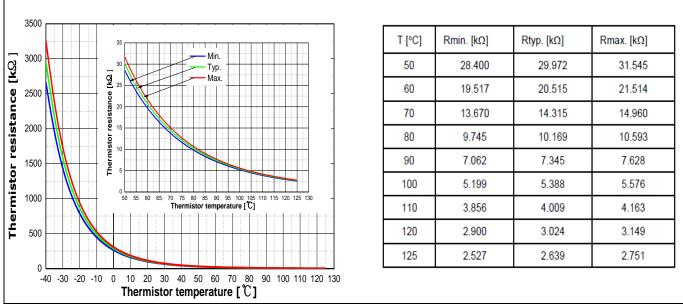
7.1 Inverter Section

-	Cumb al	Constitution	Value				
Description	Symbol	Condition	Min.	Тур.	Max.	Unit	
Turn-on propagation delay time	t _{on}		-	800	-	ns	
Turn-on rise time	tr	$V_{\text{LIN, HIN}} = 5 \text{ V},$	-	45	-	ns	
Turn-on switching time	t _{c(on)}	$I_{\rm C} = 10 \text{ A},$ $V_{\rm DC} = 600 \text{ V}$	-	230	-	ns	
Reverse recovery time	t _{rr}		-	420	-	ns	
Turn-off propagation delay time	t _{off}	$V_{\text{LIN, HIN}} = 0 V,$	-	960	-	ns	
Turn-off fall time	t _f	$I_{\rm C} = 10 {\rm A},$	-	100	-	ns	
Turn-off switching time	$t_{c(off)}$	$V_{DC} = 600 V$	-	200	-	ns	
Short circuit propagation delay time	t _{SCP}	From $V_{IT,TH+}$ to 10% I_{SC}	-	1200	-	ns	
IGBT turn-on energy (includes reverse recovery of diode)	Eon	$V_{DC} = 600 V,$ $I_{C} = 10 A$ $T_{J} = 25^{\circ}C$ 150°C	-	1.1 1.6	-	mJ	
IGBT turn-off energy	E _{off}	$V_{DC} = 600 V,$ $I_{C} = 10 A$ $T_{J} = 25^{\circ}C$ $150^{\circ}C$	-	0.6 0.9		mJ	
Diode recovery energy	E _{rec}	$V_{DC} = 600 V,$ $I_{C} = 10 A$ $T_{J} = 25^{\circ}C$ 150°C	-	0.3 0.6		mJ	

7.2 Control Section

Description	Gumhal	Condition	Value			Unit
Description	Symbol	Condition	Min.	Тур.	Max.	
Input filter time ITRIP	t _{ITRIP}	V _{ITRIP} = 1 V	-	500	-	ns
Input filter time at LIN, HIN for turn on and off	t _{FIL,IN}	$V_{\text{LIN, HIN}} = 0 \text{ V or } 5 \text{ V}$	-	350	-	ns
Fault clear time after ITRIP-fault	t _{flt,clr}	$V_{ITRIP} = 1V,$ $V_{pull-up} = 5V$ $(R = 1 M\Omega, C = 2 nF)$		1.1	-	ms
ITRIP to Fault propagation delay	t _{FLT}	$V_{\text{LIN, HIN}} = 0 \text{ or } 5 \text{ V},$ $V_{\text{ITRIP}} = 1 \text{V}$	-	650	900	ns
Internal deadtime	DT _{IC}	$V_{IN} = 0 \text{ or } V_{IN} = 5 V$	300	-	-	ns
Matching propagation delay time (On & Off) all channels	Μ _T	External dead time > 500ns	-	-	130	ns

IM818-MCC


Thermistor Characteristics

8

Thermistor Characteristics

Description	Condition	Cumhal	Value			11
Description	Condition	Symbol	Min.	Тур.	Max.	Unit
Resistor	T _{NTC} = 25°C	R _{NTC}	-	85	-	kΩ
B-constant of NTC (Negative Temperature Coefficient)		B(25/100)	-	4092	-	к

Figure 6 Thermistor resistance – temperature curve and table

(For more information, please refer to the application note 'AN2019-16 CIPOS™ Maxi IM818 application note')

9

Mechanical Characteristics and Ratings

Description	Condition		Value			
Description	Condition	Min.	Тур.	Max.	Unit	
Comparative Tracking Index(CTI)		600	-	-		
Mounting torque	M3 screw and washer	0.49	-	0.78	Nm	
Backside Curvature	Refer to Figure 8	0	-	150	μm	
Weight		-	7.1	-	g	

IM818-MCC

Qualification Information

10 Qualification Information

UL Certification	File number E314539		
Moisture sensitivity level (SOP package only)	-		
RoHS Compliant	Yes (Lead-free terminal plating)		
ESD(Electrostatic	HBM(Human body model) Class as per JESD22-A114	2 (>2000V to < 4000V)	
Discharge)	CDM(Charged Device model) Class as per JESD22-C101	C3 (>=1000V)	

Diagrams and Tables

11 Diagrams and Tables

11.1 T_c Measurement Point

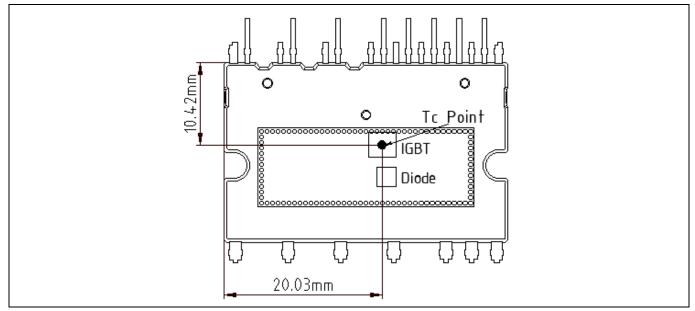


Figure 7 T_c measurement point¹

11.2 Backside Curvature Measurement Point

Figure 8 Backside curvature measurement position

¹Any measurement except for the specified point in Figure 7 is not relevant for the temperature verification and brings wrong or different information. Datasheet 15 of 21 V 2.2

IM818-MCC

Diagrams and Tables

11.3 Switching Time Definition

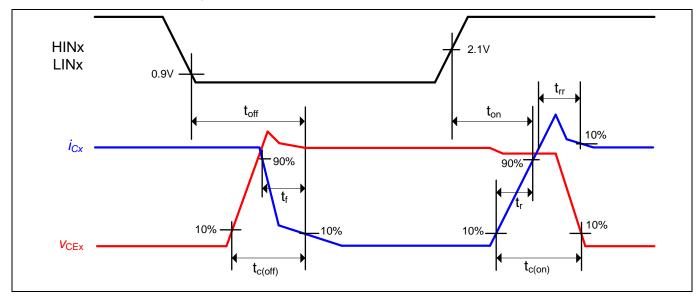
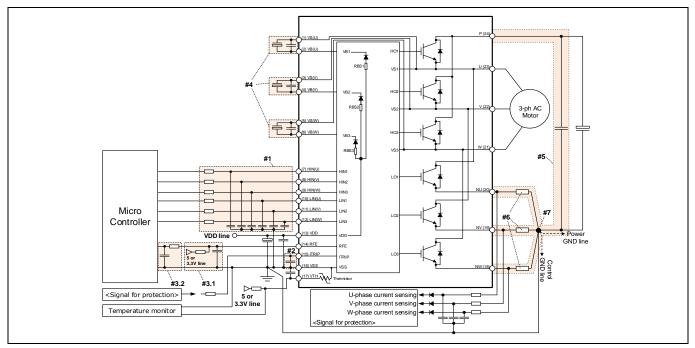


Figure 9 Switching times definition


IM818-MCC

Application Guide

12 Application Guide

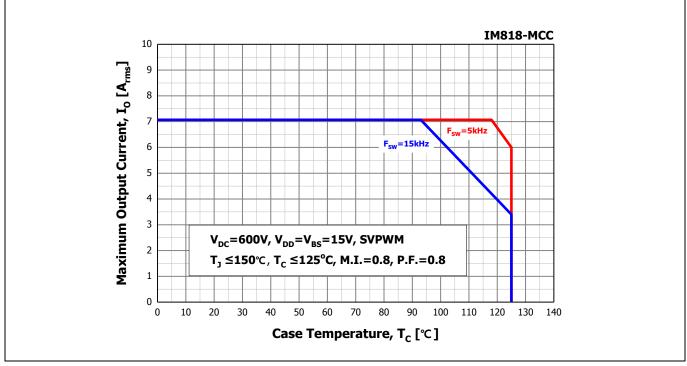
12.1 Typical Application Schematic

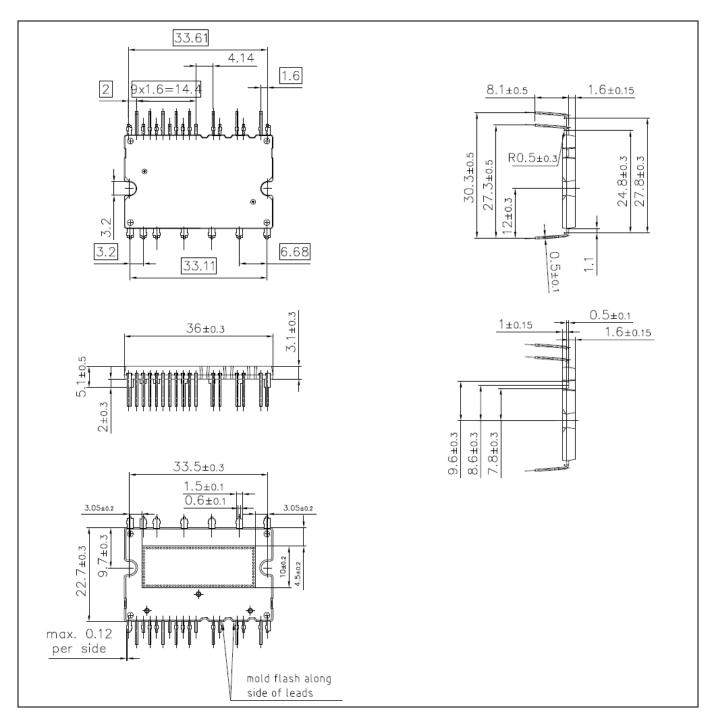
Figure 10 Typical application circuit

- 1. Input circuit
 - To reduce input signal noise by high speed switching, the R_{IN} and C_{IN} filter circuit should be mounted. (100 Ω, 1 nF)
 - C_{IN} should be placed as close to V_{SS} pin as possible.
- 2. Itrip circuit
 - To prevent protection function errors, C_{ITRIP} should be placed as close to Itrip and V_{ss} pins as possible.
- 3. RFE circuit
 - 3.1 Pull-up resistor and pull-down capacitor
 - RFE output is an open drain output. This signal line should be pulled up to the positive side of the 5 V / 3.3 V logic power supply with a proper resistor R_{PU}.
 - The fault-clear time is adjusted by RC network of a pull-up resistor, a pull-down capacitor and pull-up voltage.
 - t_{FLTCLR} = -R_{pull-up} · C_{pull-down} · ln(1- V_{RFE,TH+}/V_{pull-up}) + internal fault-clear time 160 μs
 - t_{FLTCLR} = -1 MΩ x 2 nF x ln(1 1.9 / 5 V) + 160 μ s \cong 1.1 ms at R = 1 MΩ, C = 2 nF and V_{pull-up} = 5 V
 - A pull-up resistor is limited to max. 2 M Ω
 - 3.2 RC filter
 - It is recommended that RC filter be placed as close to the controller as possible.
- 4. VB-VS circuit
 - Capacitor for high side floating supply voltage should be placed as close to VB and VS pins as possible.
- 5. Snubber capacitor
 - The wiring between IM818 and snubber capacitor including shunt resistor should be as short as possible.
- 6. Shunt resistor
 - The shunt resistor of SMD type should be used for reducing its stray inductance.
- 7. Ground pattern
 - Ground pattern should be separated at only one point of shunt resistor as short as possible.

IM818-MCC

Application Guide




Figure 11 Maximum operating current SOA¹

¹This maximum operating current SOA is just one of example based on typical characteristics for this product. It can be changed by each user's actual operating conditions. Datasheet 18 of 21 V 2.2

Package Outline

13 Package Outline

Revision history

Document version	Date of release	Description of changes
V2.2	June, 2019	Corrected typo section 7.1(HINx, LINx = 0 V)
		Minor change – Table 1 and reference document (AN) number in figure 6
V2.1	August, 2018	Minor change - Figure7, section 4(thermal resistance), section 10(qualification information), section 13(package outline)
V2.0	June, 2018	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2019-06-07

Published by

Infineon Technologies AG

81726 München, Germany

© 2019 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contair dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.