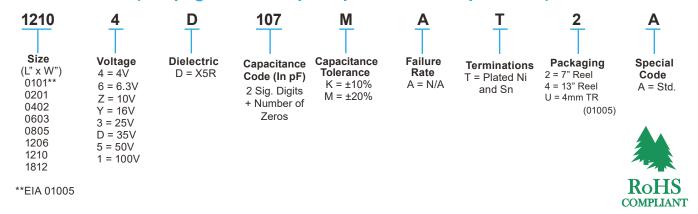
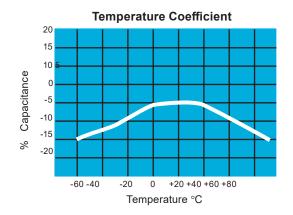
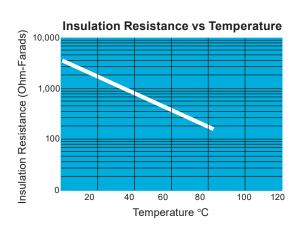

X5R Dielectric


General Specifications

GENERAL DESCRIPTION


- General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- · Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100µF)


PART NUMBER (see page 2 for complete part number explanation)

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

X5R Dielectric

Specifications and Test Methods

Parame	eter/Test	X5R Specification Limits	Measuring (Conditions					
Operating Tem	perature Range	-55°C to +85°C	Temperature C	ycle Chamber					
Capac	citance	Within specified tolerance							
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 12.5% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V For Cap > 10 μF, 0.5Vrms @ 120Hz						
Insulation	Resistance	10,000M Ω or 500M Ω - μF, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity						
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max)						
	Appearance	No defects	Deflectio						
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	30 seconds 7 1mm/sec					
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)							
	Insulation Resistance	≥ Initial Value x 0.3	9	0 mm —					
Solde	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds						
	Appearance	No defects, <25% leaching of either end terminal							
	Capacitance Variation	≤±7.5%	Dip device in eutectic so	lder at 260°C for 60sec-					
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	onds. Store at room tempore before measuring e	perature for 24 ± 2hours					
	Insulation Resistance	Meets Initial Values (As Above)							
	Dielectric Strength	Meets Initial Values (As Above)							
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes					
	Capacitance Variation	≤±7.5%	Step 2: Room Temp	≤ 3 minutes					
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes					
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes					
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro						
	Appearance	No visual defects	Charge device with 1						
	Capacitance Variation	≤ ±12.5%	test chamber set at 85% (+48,						
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	Note: Contact fac specification part numl						
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	< 1.5X rate	d voltage.					
	Dielectric Strength	Meets Initial Values (As Above)	Remove from test chamb temperature fo						
	Appearance	No visual defects							
	Capacitance Variation	≤ ±12.5%	Store in a test chamb 85% ± 5% relative hu (+48, -0) with rated	midity for 1000 hours					
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	Remove from chamber						
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature ar	nd humidity for					
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours before measuring.						

X5R Dielectric Capacitance Range

PREFERRED SIZES ARE SHADED

Case Size		0101* 0201							0402						0603							0805						
Soldering		Reflov	v Only		Re	flow O		İ	F	Reflow	//Wave	e				Ref	low/W	/ave			İ		Ref	low/W	/ave			
Packaging		Paper/E	mbossed		Α	II Pape	er er		İ		All P	aper			All Paper							Paper/Embossed						
(L) Length	mm (in.)	0.40 : (0.016 ±	± 0.02 : 0.0008)			30 ± 0. 24 ± 0.				1.00 ± 0.15 (0.040 ± 0.006) 1.60 ± 0.15 (0.063 ± 0.006)									2.01 ± 0.20 (0.079 ± 0.008)									
(W) Width	mm (in.)	0.20 : (0.008 ±	± 0.02 : 0.0008)			30 ± 0. 11 ± 0.						± 0.15 ± 0.00			0.81 ± 0.15 (0.032 ± 0.006)						1.25 ± 0.20 (0.049 ± 0.008)							
(t) Terminal	mm (in.)	0.10 : (0.004 ±	± 0.04 : 0.0016)			15 ± 0. 06 ± 0.			0.25 ± 0.15 (0.010 ± 0.006)							0.35 ± 0.15 (0.014 ± 0.006)						0.50 ± 0.25 (0.020 ± 0.010)						
Voltage:		6.3	16	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap(pF) 100	101		В					Α																				
150	151		В					Α																				
220	221		В					Α						С														
330	331		В					Α						С														
470	471		В					Α						С														
680	681		В					Α						С								İ						
1000	102		В				Α	Α						С														
1500	152	В	В				Α	Α						С														
2200	222	В	В			Α	Α	Α						С														
3300	332	В	В			Α	Α	Α						С														
4700	472	В	В			Α	Α	Α					С								G							
6800	682	В	В			Α	Α	Α					С								G							
Cap(µF) 0.01	103	В	В			Α	Α	Α					С						G	G	G							
0.015	150	В											С						G	G	G							
0.022	223	В			Α	Α	Α	Α				С	С						G	G	G							N
0.033	333	В										С							G	G	G							N
0.047	473	В			Α	Α	Α	Α				С	С						G	G	G							N
0.068	689	В										С							G		G							N
0.1	104	В			Α	Α	Α	Α			С	С	С	С					G	G	G					N	N	N
0.15	154																		G							N	N	
0.22	224	В		Α	Α	Α				С	С	С	С	С				G	G							N	N	N
0.33	334																	G	G							N		
0.47	474	В		Α	Α				С	С	С	С	С	Е				G	J							N	Р	Р
0.68	684																	G								N		
1.0	105			Α	Α	С	С		С	С	С	С	С	Е	G	G	G	G	J	G	G				N	N	Р	Р
1.5	155																											
2.2	225			С	С	С			С	С	С	С	С		G	G	J	J	J	K	K			N	N	N	Р	Р
3.3	335														J	J	J						N	N				
4.7	475			С	С				Е	Е	Е	Е			J	J	J	G	G			N	Р	J	N	N	Р	Р
10	106								Е	Е	Е				K	J	J	J				Р	Р	Р	Р	Р	Р	Р
22	226								Е	Е					K	K	K					Р	Р	Р	Р	Р		
47	476														K	K						Р	Р	Р				
100	107																					Р	Р					
Voltage:		6.3 16 4 6.3 10 16 25			4 6.3 10 16 25 50						4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50				
Case Size		0101* 0201								04	02						0603							0805				

Letter	Α	В	С	E	G	J	К	М	N	Р	Q	Х	Y	Z				
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79				
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)				
•	PAPER							EMBOSSED										

PAPER and EMBOSSED available for 01005

NOTE: Contact factory for non-specified capacitance values

*EIA 01005

X5R Dielectric Capacitance Range

PREFERRED SIZES ARE SHADED

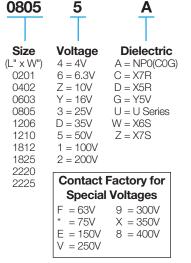
Case	e Size					1206							1210							1812						
	dering				Re	flow/Wa	ave			Reflow Only								Reflow Only								
	caging					r/Embo				Paper/Embossed										Embos						
1 40.	.ug.i.g	mm				$20 \pm 0.$				3.20 ± 0.20								4.50 ± 0.30								
(L) Length		(in.)				20 ± 0. 26 ± 0.							20 ± 0. 26 ± 0.			(0.177 ± 0.012)										
		mm											50 ± 0.				3.20 ± 0.20									
(W) Width		(in.)				63 ± 0.							98 ± 0.				3.20 ± 0.20 (0.126 ± 0.008)									
(t) Terminal		mm			0.	50 ± 0.	25			0.50 ± 0.25								0.61 ± 0.36								
(t) Terrilliai		(in.)			(0.0	$20 \pm 0.$	010)			(0.020 ± 0.010)								(0.024 ± 0.014)								
Vol	tage:		4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50			
Cap(pF)	100	101																								
	150	151																								
	220	221																								
	330	331																								
	470	471																					Щ			
	680	681																					Щ			
	1000	102																								
	1500	152																								
	2200	222																								
	3300	332																								
	4700	472																								
	6800	682																								
Cap(µF)	0.01	103																								
	0.015	150																								
	0.022	223																								
	0.033	333																								
	0.047	473																								
	0.068	689																								
	0.1	104																								
	0.15	154																								
	0.22	224																								
	0.33	334																					Ш			
	0.47	474					Q	Q							Х	Х										
	0.68	684																					Щ			
	1.0	105					Q	Q	Q					Х	Х	Х							Щ			
	1.5	155																					igsqcup			
	2.2	225			Q	Q	Q	Q	Q				<u> </u>	Х	Z	Z							\square			
	3.3	335		Q	Q																		Щ			
	4.7	475	Х	Х	Х	Х	Х	Х	Х			Z	Z	Z	Z	Z			<u> </u>	<u> </u>			Щ			
	10	106	Х	Х	Х	Х	Х	Х	Х		Х	Х	Z	Z	Z	Z					Z		Щ			
	22	226	Х	Х	Х	Х	Х			Z	Z	Z	Z	Z	Z		Z	Z	Z	Z			\sqcup			
	47	476	Х	Х	Х	Х				Z	Z	Z	Z	Z		igdash							\sqcup			
	100	107	Х	Χ						Z	Z	Z	Z			\sqcup							\sqcup			
Volta			4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50			
Case	e Size					1206							1210							1812						

Letter	А	В	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z		
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79		
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)		
			PAI	PER			EMBOSSED									

PAPER and EMBOSSED available for 01005

NOTE: Contact factory for non-specified capacitance values

*EIA 01005


How to Order

Commercial Surface Mount Chips

EXAMPLE: 08055A101JAT2A

 $105 = 1 \mu F$ $106 = 10 \mu F$ $107 = 100 \mu F$ For values below

10 pF, use "R"

in place of

Decimal point, e.g.,

9.1 pF = 9R1.

101 Capacitance **Tolerance** $B = \pm .10 pF$ 2 Sig. Fig + No. of Zeros $C = \pm .25 pF$ Examples: $D = \pm .50 pF$ 100 = 10 pF $F = \pm 1\% \ (\ge 25 pF)$ $101 = 100 \, pF$ 102 = 1000 pF $J = \pm 5\%$ 223 = 22000 pF $K = \pm 10\%$ $224 = 220000 \, \text{pF}$ $M = \pm 20\%$

 $G = \pm 2\% (\ge 13 \text{ pF})$ Z = +80%, -20%P = +100%, -0%

Failure Rate A = N/A

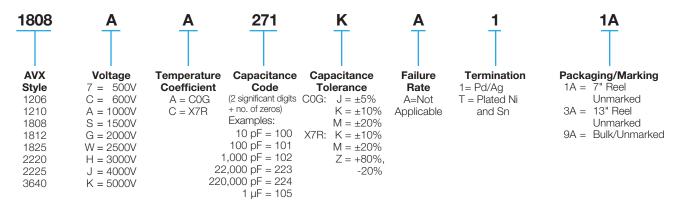
T = Plated Ni and Sn 7 = Gold Plated Contact

Terminations

Factory For 1 = Pd/Ag Term **Packaging**

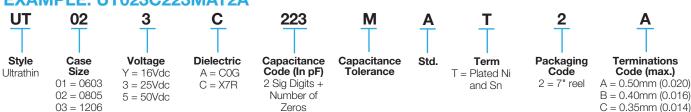
Special Code

A = Std.


<u>Available</u> 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk

Contact **Factory For Multiples**

* B, C & D tolerance for ≤10 pF values. Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value.

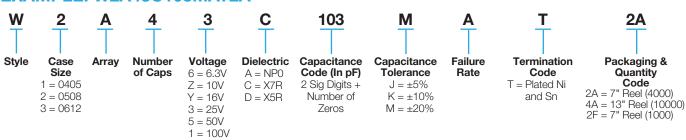

High Voltage Surface Mount Chips

EXAMPLE: 1808AA271KA11A

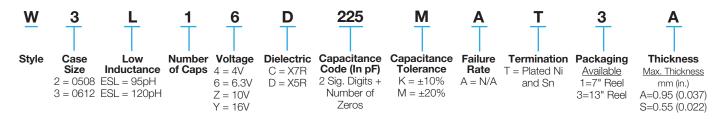
Ultra Thin Surface Mount Chips

EXAMPLE: UT023C223MAT2A

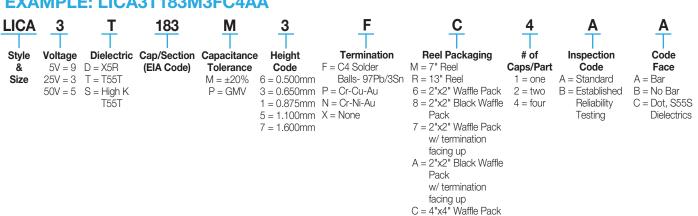
Please handle these products with due care as they are inherently more fragile than standard MLC capacitors because of their physical dimensions.


How to Order

Capacitor Array


Low Inductance Capacitors (LICC)

EXAMPLE: 0612ZD105MAT2A


Interdigitated Capacitors (IDC)

EXAMPLE: W3L16D225MAT3A

Decoupling Capacitor Arrays (LICA)

EXAMPLE: LICA3T183M3FC4AA

w/ clear lid