

COG (NPO) is the most popular formulation of the "tempera-ture-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.
COG (NPO) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ which is less than $\pm 0.3 \% \Delta \mathrm{C}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Capacitance drift or hysteresis for COG (NPO) ceramics is negligible at less than $\pm 0.05 \%$ versus up to $\pm 2 \%$ for films. Typical capacitance change with life is less than $\pm 0.1 \%$ for COG (NPO), one-fifth that shown by most other dielectrics. COG (NPO) formulations show no aging characteristics.

PART NUMBER (see page 2 for complete part number explanation)

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Parameter/Test		NP0 Specification Limits	Measuring Conditions	
Operating Tem	perature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperature Cycle Chamber	
Capacitance		Within specified tolerance	Freq.: $1.0 \mathrm{MHz} \pm 10 \%$ for cap $\leq 1000 \mathrm{pF}$ $1.0 \mathrm{kHz} \pm 10 \%$ for cap > 1000 pF Voltage: $1.0 \mathrm{Vrms} \pm .2 \mathrm{~V}$	
Q		$\begin{aligned} <30 \mathrm{pF}: & \mathrm{Q} \geq 400+20 \times \text { Cap Value } \\ & \geq 30 \mathrm{pF}: Q \geq 1000 \end{aligned}$		
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{M} \Omega-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150\% of rated voltage for 500V devices.	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds $1 \mathrm{~mm} / \mathrm{sec}$	
	Capacitance Variation	$\pm 5 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater		
	Q	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for 5.0 ± 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, <25\% leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater		
	Q	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater	Step 2: Room Temp	≤ 3 minutes
	Q	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with twice rated voltage in test chamber set at $125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours (+48, -0). Remove from test chamber and stabilize at room temperature for 24 hours before measuring.	
	Capacitance Variation	$\leq \pm 3.0 \%$ or $\pm .3 \mathrm{pF}$, whichever is greater		
	(C=Nominal Cap)	$\begin{array}{rlrl} \geq 30 \mathrm{pF}: & & \mathrm{Q} \geq 350 \\ \geq 10 \mathrm{pF}, & <30 \mathrm{pF}: & & \mathrm{Q} \geq 275+5 \mathrm{C} / 2 \\ & <10 \mathrm{pF}: & & \mathrm{Q} \geq 200+10 \mathrm{C} \end{array}$		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} /$ $85 \% \pm 5 \%$ relative humidity for 1000 hours $(+48,-0)$ with rated voltage applied. Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Capacitance Variation	$\leq \pm 5.0 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater		
	Q	$\begin{array}{rlrl} \geq 30 \mathrm{pF}: & & \mathrm{Q} \geq 350 \\ \geq 10 \mathrm{pF}, & <30 \mathrm{pF}: & & \mathrm{Q} \geq 275+5 \mathrm{C} / 2 \\ & <10 \mathrm{pF}: & & Q \geq 200+10 \mathrm{C} \end{array}$		
	Insulation Resistance	\geq Initial Value $\times 0.3$ (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		

PREFERRED SIZES ARE SHADED

PREFERRED SIZES ARE SHADED

Commercial Surface Mount Chips

EXAMPLE: 08055A101JAT2A

0805	5	A	101	J*
$\begin{gathered} \text { Size } \\ (\text { L" } \times \text { W") } \\ 0201 \\ 0402 \\ 0603 \\ 0805 \\ 1206 \\ 1210 \\ 1812 \\ 1825 \\ 2220 \\ 2225 \end{gathered}$	Voltage	Dielectric	Capacitance	Tolerance
		A = NPO(COG)	2 Sig. Fig +	$\mathrm{B}= \pm .10 \mathrm{pF}$
	$6=6.3 \mathrm{~V}$	$\mathrm{C}=\mathrm{X} 7 \mathrm{R}$	No. of Zeros	$\mathrm{C}= \pm .25 \mathrm{pF}$
	$\mathrm{Z}=10 \mathrm{~V}$	$\mathrm{D}=\times 5 \mathrm{R}$	Examples:	$\mathrm{D}= \pm .50 \mathrm{pF}$
	$Y=16 \mathrm{~V}$	$\mathrm{G}=\mathrm{Y} 5 \mathrm{~V}$	$100=10 \mathrm{pF}$	$\mathrm{F}= \pm 1 \%$ ($\geq 25 \mathrm{pF})$
	$3=25 \mathrm{~V}$	$U=\cup$ Series	$101=100 \mathrm{pF}$	$\mathrm{G}= \pm 2 \%$ ($\geq 13 \mathrm{pF}$)
	$\mathrm{D}=35 \mathrm{~V}$	$W=\times 6 S$	$102=1000 \mathrm{pF}$	$\mathrm{J}= \pm 5 \%$
	$5=50 \mathrm{~V}$	$\mathrm{Z}=\mathrm{X7S}$	$223=22000 \mathrm{pF}$	$\mathrm{K}= \pm 10 \%$
	$1=100 \mathrm{~V}$		$224=220000 \mathrm{pF}$	$\mathrm{M}= \pm 20 \%$
	$2=200 \mathrm{~V}$		$105=14 \mathrm{~F}$	$\mathrm{Z}=+80 \%,-20 \%$
	Contact	actory for	106 $=10 \mathrm{~F}$	$P=+100 \%$
	Special	Voltages	For values below	
	$\mathrm{F}=63 \mathrm{~V}$	$9=300 \mathrm{~V}$	10 pF , use "R"	
	${ }^{*}=75 \mathrm{~V}$	$\mathrm{X}=350 \mathrm{~V}$		
	$\mathrm{E}=150 \mathrm{~V}$ $\mathrm{~V}=250 \mathrm{~V}$	$8=400 \mathrm{~V}$	Decimal point, e.g., $9.1 \mathrm{pF}=9 R 1 .$	

* B, C \& D tolerance for $\leq 10 \mathrm{pF}$ values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness.
See individual part tables for tape material type for each capacitance value.

High Voltage Surface Mount Chips

EXAMPLE: 1808AA271KA11A

1808	A	A	271	K	A	1	1 A
			-				
AVX	Voltage	Temperature	Capacitance	Capacitance	Failure	Termination	Packaging/Marking
Style	7 = 500 V	Coefficient	Code	Tolerance	Rate	$1=\mathrm{Pd} / \mathrm{Ag}$	1A = 7" Reel
1206	$\mathrm{C}=600 \mathrm{~V}$	$\mathrm{A}=\mathrm{COG}$	(2 significant digits	COG: $J= \pm 5 \%$	A=Not	T = Plated Ni	Unmarked
1210	A $=1000 \mathrm{~V}$	$\mathrm{C}=\mathrm{X} 7 \mathrm{R}$	+ no. of zeros)	$\mathrm{K}= \pm 10 \%$	Applicable	and Sn	$3 \mathrm{~A}=13 \mathrm{CReel}$
1808	$\mathrm{S}=1500 \mathrm{~V}$		Examples:	$\mathrm{M}= \pm 20 \%$			Unmarked
1812	$\mathrm{G}=2000 \mathrm{~V}$		$10 \mathrm{pF}=100$	X7R: $K= \pm 10 \%$			9A = Bulk/Unmarked
1825	$\mathrm{W}=2500 \mathrm{~V}$		$100 \mathrm{pF}=101$	$\mathrm{M}= \pm 20 \%$			
2220	$\mathrm{H}=3000 \mathrm{~V}$		1,000 pF $=102$	$Z=+80 \%$,			
2225	$J=4000 \mathrm{~V}$		$22,000 \mathrm{pF}=223$	-20\%			
3640	$\mathrm{K}=5000 \mathrm{~V}$		$\begin{array}{r} 20,000 \mathrm{pF}=224 \\ 1 \mu \mathrm{~F}=105 \end{array}$				

Ultra Thin Surface Mount Chips

EXAMPLE: UT023C223MAT2A

Please handle these products with due care as they are inherently more fragile than standard MLC capacitors because of their physical dimensions.

How to Order

Capacitor Array

EXAMPLE: W2A43C103MAT2A

Low Inductance Capacitors (LICC)
EXAMPLE: 0612ZD105MAT2A

Interdigitated Capacitors (IDC)

EXAMPLE: W3L16D225MAT3A

Decoupling Capacitor Arrays (LICA)
EXAMPLE: LICA3T183M3FC4AA

LICA	3	T	183	M	3	F	C	4	A	A
\|										
Style \&	Voltage $5 \mathrm{~V}=9$	Dielectric $D=X 5 R$	Cap/Section (EIA Code)	Capacitance Tolerance	Height Code	Termination F $=$ C4 Solder	Reel Packaging $M=7{ }^{\text {" Reel }}$	\# of Caps/Part	Inspection Code	Code Face
Size	$25 \mathrm{~V}=3$	T = T55T		$\mathrm{M}= \pm 20 \%$	$6=0.500 \mathrm{~mm}$	Balls- 97Pb/3Sn	$R=13$ "Reel	1 = one	A = Standard	A = Bar
	$50 \mathrm{~V}=5$	$S=$ High K		$\mathrm{P}=\mathrm{GMV}$	$3=0.650 \mathrm{~mm}$	$\mathrm{P}=\mathrm{Cr}-\mathrm{Cu}-\mathrm{Au}$	6 = 2"x2" Waffle Pack	2 = two	B = Established	$B=$ No Bar
		T55T			$1=0.875 \mathrm{~mm}$	$\mathrm{N}=\mathrm{Cr}-\mathrm{Ni}-\mathrm{Au}$	8 = 2"x2" Black Waffle	4 = four	Reliability	C = Dot, S55S
					$5=1.100 \mathrm{~mm}$	$X=$ None	Pack		Testing	Dielectrics
					$7=1.600 \mathrm{~mm}$		7 = 2"x2" Waffle Pack w/ termination			
							facing up			
							A = 2"x2" Black Waffle			
							Pack			
							w/ termination			
							facing up			
							C = 4"x4" Waffle Pack			
							w/ clear lid			

