General Specifications

COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.
COG (NPO) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is $0 \pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ which is less than $\pm 0.3 \% \mathrm{C}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Capacitance drift or hysteresis for COG (NPO) ceramics is negligible at less than $\pm 0.05 \%$ versus up to $\pm 2 \%$ for films. Typical capacitance change with life is less than $\pm 0.1 \%$ for COG (NPO), one-fifth that shown by most other dielectrics. COG (NPO) formulations show no aging characteristics.

PART NUMBER (see page 4 for complete part number explanation)

0805	5	A	101	J	A	T	2	A
$\begin{gathered} \text { Size } \\ \left(\text { L" }^{\prime}\right. \text { W") } \end{gathered}$	Voltage $6.3 \mathrm{~V}=6$ $10 \mathrm{~V}=\mathrm{Z}$	DielectricCOG (NPO) = A	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $B= \pm .10 \mathrm{pF}$ (<10pF) $\mathrm{C}= \pm .25 \mathrm{pF}(<10 \mathrm{pF})$ $\mathrm{D}= \pm .50 \mathrm{pF}$ ($<10 \mathrm{pF}$) $\mathrm{F}= \pm 1 \%$ ($\geq 10 \mathrm{pF}$) $\mathrm{G}= \pm 2 \%(\geq 10 \mathrm{pF})$ $J= \pm 5 \%$ $\mathrm{K}= \pm 10 \%$	Failure Rate A = Not Applicable	$\begin{aligned} & \text { Terminations } \\ & \mathrm{T}=\mathrm{Plated} \mathrm{Ni} \\ & \text { and } \mathrm{Sn} \end{aligned}$	Packaging $2=7 "$ Reel $4=13^{\prime \prime}$ Ree $\mathrm{U}=4 \mathrm{~mm} \mathrm{TR}$ (01005)	Special Code A = Std. Product Factory tiples
	$16 \mathrm{~V}=\mathrm{Y}$							
	$25 \mathrm{~V}=3$ $50 \mathrm{~V}=5$					Factory For		
	$100 \mathrm{~V}=1$					1 = Pd/Ag Term		
	$200 \mathrm{~V}=2$					7 = Gold Plated		
	$250 \mathrm{~V}=\mathrm{V}$					NOT RoHS		
	$500 \mathrm{~V}=7$					COMPLIANT		

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Specifications and Test Methods

Parameter/Test		NP0 Specification Limits	Measu	nditions
Operating Temperature Range		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Temperatu	le Chamber
Capacitance		Within specified tolerance $<30 \mathrm{pF}$: $\mathrm{Q} \geq 400+20 \times$ Cap Value $\geq 30 \mathrm{pF}: \mathrm{Q} \geq 1000$	Freq.: $1.0 \mathrm{MHz} \pm 10 \%$ for cap $\leq 1000 \mathrm{pF}$ $1.0 \mathrm{kHz} \pm 10 \%$ for cap > 1000 pF Voltage: $1.0 \mathrm{Vrms} \pm .2 \mathrm{~V}$	
Q				
Insulation Resistance		$100,000 \mathrm{M} \Omega$ or $1000 \mathrm{MQ}-\mu \mathrm{F}$, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity	
Dielectric Strength		No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500 V devices.	
Resistance to Flexure Stresses	Appearance	No defects	Deflection: 2 mm Test Time: 30 seconds $1 \mathrm{~mm} / \mathrm{sec}$	
	Capacitance Variation	$\pm 5 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater		
	Q	Meets Initial Values (As Above)		
	Insulation Resistance	\geq Initial Value $\times 0.3$		
Solderability		$\geq 95 \%$ of each terminal should be covered with fresh solder	Dip device in eutectic solder at $230 \pm 5^{\circ} \mathrm{C}$ for $5.0 \pm$ 0.5 seconds	
Resistance to Solder Heat	Appearance	No defects, $<25 \%$ leaching of either end terminal	Dip device in eutectic solder at $260^{\circ} \mathrm{C}$ for 60 sec - onds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.	
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater		
	Q	Meets Initial Values (As Above)		
	Insulation Resistance	Meets Initial Values (As Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Thermal Shock	Appearance	No visual defects	Step 1: $-55^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 2.5 \%$ or $\pm .25 \mathrm{pF}$, whichever is greater	Step 2: Room Temp	≤ 3 minutes
	Q	Meets Initial Values (As Above)	Step 3: $+125^{\circ} \mathrm{C} \pm 2^{\circ}$	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature	
Load Life	Appearance	No visual defects	Charge device with twice rated voltage in test chamber set at $125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ for 1000 hours ($+48,-0$). Remove from test chamber and stabilize at room temperature for 24 hours before measuring.	
	Capacitance Variation	$\leq \pm 3.0 \%$ or $\pm .3 \mathrm{pF}$, whichever is greater		
	$\begin{gathered} \mathrm{Q} \\ (\mathrm{C}=\text { Nominal Cap }) \end{gathered}$	$\geq 30 \mathrm{pF}:$ $\mathrm{Q} \geq 350$ $\geq 10 \mathrm{pF},<30 \mathrm{pF}:$ $\mathrm{Q} \geq 275+5 \mathrm{C} / 2$ $<10 \mathrm{pF}:$ $\mathrm{Q} \geq 200+10 \mathrm{C}$		
	Insulation Resistance	\geq Initial Value x 0.3 (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at $85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} / 85 \% \pm$ 5% relative humidity for 1000 hours $(+48,-0)$ with rated voltage applied. Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.	
	Capacitance Variation	$\leq \pm 5.0 \%$ or $\pm .5 \mathrm{pF}$, whichever is greater		
	Q	$\geq 30 \mathrm{pF}:$ $\mathrm{Q} \geq 350$ $\geq 10 \mathrm{pF},<30 \mathrm{pF}:$ $\mathrm{Q} \geq 275+5 \mathrm{C} / 2$ $<10 \mathrm{pF}:$ $\mathrm{Q} \geq 200+10 \mathrm{C}$		
	Insulation Resistance	\geq Initial Value x 0.3 (See Above)		
	Dielectric Strength	Meets Initial Values (As Above)		

Capacitance Range
PREFERRED SIZES ARE SHADED

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{array}{\|c\|} \hline 0.33 \\ (0.013) \end{array}$	$\begin{gathered} 0.22 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \\ \hline \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \\ \hline \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.27 \\ (0.050) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \\ \hline \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} 2.29 \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \\ \hline \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \\ \hline \end{gathered}$
PAPER														

Capacitance Range

Letter	A	B	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} 0.22 \\ (0.009) \end{gathered}$	$\begin{gathered} \hline 0.56 \\ (0.022) \\ \hline \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \\ \hline \end{gathered}$	$\begin{gathered} 1.02 \\ (0.040) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (0.050) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.52 \\ (0.060) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.29 \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} 2.54 \\ (0.100) \\ \hline \end{gathered}$	$\begin{gathered} 2.79 \\ (0.110) \\ \hline \end{gathered}$
	PAPER						EMBOSSED							

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order

Part Number Explanation

Commercial Surface Mount Chips
EXAMPLE: 08055A101JAT2A

* B, C \& D tolerance for $\leq 10 \mathrm{pF}$ values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness.
See individual part tables for tape material type for each capacitance value.
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
For Tin/Lead Terminations, please refer to LD Series

High Voltage MLC Chips
EXAMPLE: 1808AA271KAT2A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers
For Tin/Lead Terminations, please refer to LD Series

For RoHS compliant products, please select correct termination style

Part Number Explanation

Capacitor Array
EXAMPLE: W2A43C103MAT2A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Low Inductance Capacitors (LICC)
EXAMPLE: 0612ZD105MAT2A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Interdigitated Capacitors (IDC)
EXAMPLE: W3L16D225MAT3A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
Low Inductance Decoupling Capacitor Arrays (LICA)
EXAMPLE: LICA3T183M3FC4AA

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order

