Product code guide (Conductive polymer Surface mount type)
(Example : PXJ series, 6.3V-390 $\mu \mathrm{F}, \phi 6.3 \times 5.8 \mathrm{~L}$)
Please refer to the following table

*Refer to the appendix (Part number) for codes not listed here.

Product code guide (Conductive polymer Radial lead type)

(Example : PSK series, $6.3 \mathrm{~V}-330 \mu \mathrm{~F}, ~ \phi 5 \times 8 \mathrm{~L}$,Long Lead with bulk) Please refer to the following table

Voltage(V)	Code
2	$2 R 0$
2.5	2 R 5
4	4 RO
6.3	6 R 3
10	100
16	160
20	200
25	250
35	350

Product code guide (Conductive polymer hybrid Surface mount type) (Example : HXC series, $16 \mathrm{~V}-82 \mu \mathrm{~F}, \phi 6.3 \times 5.8 \mathrm{~L}$)

Please refer to the following table

*Refer to the appendix (Part number) for codes not listed here

Product code guide (Conductive polymer hybrid Radial lead type)

(Example : HSC series, $25 \mathrm{~V}-330 \mu \mathrm{~F}, \phi 10 \times 12.5 \mathrm{~L}$, Long Lead with bulk)
Please refer to the following table

Product code guide (Surface mount type)

(Example : MVE series, $25 \mathrm{~V}-47 \mu \mathrm{~F}, \phi 6.3 \times 5.2 \mathrm{~L}$)
Please refer to the following table

Contents	Code
Polar	E

Series	Code
MVE	MVE

Type	Code
No dummy terminal	A
With dummy terminal	G

Voltage(V)	Code
4	4 RO
6.3	6 R 3
10	100
25	250
100	101
\vdots	\vdots

*Refer to the appendix (Part number) for codes not listed here.

Product code guide (Radial lead type)

(Example : KMQ series, $100 \mathrm{~V}-100 \mu \mathrm{~F}, \boldsymbol{\phi} 10 \times 16 \mathrm{~L}$, Long lead with bulk)
Please refer to the following table

Contents	Code
Polar	E

Type	Code
Radial lead	E

Tol.(\%)	Code
± 20	M
-10 to +20	V

Sleeve materia	Terminal plating material	Code
PET	$\mathrm{Sn}-\mathrm{Bi}$	D
	Sn	S
Sleeveless (Coating case)	$\mathrm{Sn}-\mathrm{Bi}$	G
	Sn	H
\downarrow		

*Refer to the appendix (Part number) for codes not listed here.

CUT/FORMED LEAD

Terminal type	Terminal type	Terminal type
-Lead code : FC (Forming Cut type) Size : $\phi \mathrm{D}=5$ to 8	-Lead code : C3 (Cutting type) Size : $\phi \mathrm{D}=5$ to 18 Dimension (C) - $\phi \mathrm{D}=5$ to $8: \mathrm{C} 3: 3.5 \pm 0.5($ Second standard C5: 5.0 ± 0.5) - $\phi \mathrm{D}=10$ to $18: \mathrm{C} 3: 3.5 \pm 0.5$ (Second standard C5: $5.0_{-0}^{ \pm 1.0}$)	-Lead code : IJ (Forming Cut type) Dimension
-Lead code : FM (Snap-in type) Size : $\phi \mathrm{D}=5$ to 8	-Lead code : MC (Snap-in type) Size : $\phi \mathrm{D}=10$ to 18	*1 Please consult with us about other terminal forming. *2 Please refer to dimensions of each series for gas escape end seal. *3 Conventionally, lead forming code is used in common by (BC) for two type of the lead bent directions. We added lead forming code (BD) newly and clarified the lead bent directions. Please place an order after the choice for an appropriate lead forming code depending on condition of use.
-Lead code : BC (Horizontal type)*3 Size : $\phi \mathrm{D}=10$ to 18 Dimension (P) - $\phi 10, \phi 12.5: P=5.0 \pm 0.5$ - $\phi 14.5, \phi 16, \phi 18: P=7.5 \pm 0.5$	-Lead code : BD (Horizontal type)*3 Size : $\phi \mathrm{D}=10$ to 18 Dimension (P) - $\phi 10, \phi 12.5: P=5.0 \pm 0.5$ - $\phi 14.5, \phi 16, \phi 18: P=7.5 \pm 0.5$	

снемl-сол PART NUMBERING SYSTEM

Product code guide (Snap-in type)

(Example : KMS series, $400 \mathrm{~V}-330 \mu \mathrm{~F}, \boldsymbol{\phi} 30 \times 30 \mathrm{~L}$)
Please refer to the following table

Contents	Code
Polar	E

Series	Code
KMS	KMS

For more details, refer to Product Guide.

Type	Code
Snap-in	VS
Snap-in	VN
Flat terminal for PCB	LI
For Connector	LR
Horizontal	LC
Straight	VR

Tol.(\%)	Code
± 20	M

Sleeve material	Terminal plating material	Code
PET	Sn	S
		M

code	
tol	
Cap. $(\mu \mathrm{F})$	Code
39	390
47	470
100	101
470	471
1,000	102
4,700	472
10,000	103
\vdots	\vdots

个		code	
$\phi \mathrm{D}(\mathrm{mm})$ Code 22 P 25.4 Q 30 R 35 A 40 B$\mathrm{L}(\mathrm{mm})$ Code 20 20 25 25 30 30 35 35 40 40 45 45 50 50 55 55 60 60			

*Refer to the appendix (Part number) for codes not listed here.

[^0]
Product code guide (Screw mount terminal type)

(Example : KMH series, $400 \mathrm{~V}-3,300 \mu \mathrm{~F}, \phi 63.5 \times 120 \mathrm{~L}$, Without mounting clamp)
Please refer to the following table

Category

code

Sleeve Material	Plastic disk	Code
PVC	Provided	U

| \uparrow |
| :---: | :---: |
| 个D(mm) Code
 35 A
 50 C
 63.5 D
 76.2 E
 89 F
 100 G |

L(mm)	Code
50	50
55	55
60	60
65	65
75	75
80	80
85	85
90	90
95	95
96	96
100	A0
105	A5
110	B0
115	B5
120	C0
125	C5
130	D0
140	E0
145	E5
155	F5
170	H0
190	K0
210	M0
220	N0
250	R0
270	T0

Part numbering system

Our part numbering system is common to all of Nippon Chemi-Con's subsidiaries worldwide, and has been switching the conventional part numbering system. The part number uses 18-digit codes to express information of principal product specifications such as product category, series name, rated voltage, capacitance, case size and RoHS compliance.

Categories

* For digits 2 to 18, please see "Product code guide".

Oxample

Product type	Part number (Example)	Conventional part number (Ref.)
Surface mount type	EMVE160ADA100MD55G	MVE16VC10MD55E0
Radial lead type	EKMQ6R3ETC102MHB5D	TC04RKMQ6. 3VB1000MF50E0
Snap-in type	EKMQ201VSN471MP30S	KMQ200VSSN470M22BE0
Screw mount terminal type	ERWE551LGC821MCD0U	RWE550LGSN820MCC13EA

U37F series

Part Numbering System for U37F Series When ordering, always specify complete 18 -field global part number.

9 Supplement Code. Field 18.

$\mathrm{U}=\mathrm{PVC}$ sleeve with end disk. Other sleeve material available as option upon request.
Case Size. Fields 15, 16 and 17.
The single letter diameter code is inserted in field 15.

$$
\begin{aligned}
& \mathrm{C}=\varnothing 50.8 \mathrm{~mm}(\varnothing 2.000 "), \\
& \mathrm{D}=\varnothing 63.5 \mathrm{~mm}(\varnothing 2.500 ") \\
& \mathrm{E}=\varnothing 76.2 \mathrm{~mm}\left(\varnothing 3.000{ }^{\prime \prime}\right) \\
& \mathrm{F}=\varnothing 89.0 \mathrm{~mm}(\varnothing 3.500 ")
\end{aligned}
$$

The double character length code is inserted in fields 16 and 17. For lengths $\leq 99 \mathrm{~mm}$, insert the actual length rounded to nearest millimeter. For lengths of 100 mm or more, insert the appropriate alpha numeric code as indicated below.
$92=92 \mathrm{~mm}(3.625 ")$
A5 $=105 \mathrm{~mm}(4.125 ")$
B7 $=117 \mathrm{~mm}$ (4.625")
D0 $=130 \mathrm{~mm}\left(5.125^{\prime \prime}\right)$
$\mathrm{E} 3=143 \mathrm{~mm}(5.625 ")$
F5 $=155 \mathrm{~mm}$ (6.125")
$\mathrm{J} 1=181 \mathrm{~mm}\left(7.125^{\prime \prime}\right)$
$K 0=190 \mathrm{~mm}(7.500 ")$
M9 = 219mm (8.625")
Capacitance Tolerance. Field 14.
$M= \pm 20 \%$
解 11,12 and 13 Expressed in Microfarads. The first two digits are significant figures inserted in fields 11 and 12, and the third digit inserted in field 13 indicates the number of zeros for capacitance of $10 \mu \mathrm{~F}$ or more. R indicates the decimal point for capacitance less than $10 \mu \mathrm{~F}$ (e.g. $1 R 0=1.0 \mu \mathrm{~F} ; 100=10 \mu \mathrm{~F} ; 101=100 \mu \mathrm{~F}$; $102=1,000 \mu \mathrm{~F} ; 103=10,000 \mu \mathrm{~F})$.
Mounting Hardware. Field 10.
$\mathrm{N}=$ None.
C = Three-footed clamp.
$\mathrm{S}=$ Stud mount. The mounting nut is not included with stud mount orders. It must be ordered separately.
Terminal Type. Fields 8 and 9 .
HP = High post 10-32 NF-2B screw thread.
$\mathrm{HL}=$ High post M5x0.8 screw thread.
CD $=$ M5x0.8 screw thread.
$\mathrm{CP}=$ Low post $1 / 4-28 \mathrm{NF}-2 \mathrm{~B}$ screw thread.
$\mathrm{CH}=$ High post $1 / 4-28 \mathrm{NF}-2 \mathrm{~B}$ screw thread.
$\mathrm{CA}=$ Low post $\mathrm{M} 6 \times 1$ screw thread.
$\mathrm{CS}=$ High post $\mathrm{M} 6 \times 1$ screw thread.
3 DC Rated Voltage. Fields 5, 6 and 7.
Expressed in Volts. The first two digits are significant figures inserted in fields 5 and 6, and the third digit inserted in field 7 indicates the number of zeros for rated voltage of 10VDC or more. R indicates the decimal point for rated voltage less than 10 VDC (e.g. $4 R 0=4.0 \mathrm{VDC} ; 400=40 \mathrm{VDC} ; 401=400 \mathrm{VDC}$).

Enter the 3 -letter/digit series name in fields 2, 3 and 4 . If the series name is only 2 letters/digits, place a dash in field 4. For a series name with more than 3 letters/digits, refer to the individual series for the appropriate 3 -field series name.
Capacitor Type. Field 1.
Aluminum Electrolytic Capacitor (Polar).

Part Numbering System for U37L Series When ordering, always specify complete 18-field global part number.

(1) 23 (3) (3) (7) 8 (1) (1) (1) (1) (13) (1) (1) (1) (1) (18)

E 37 L 401 CP C 332 MDA 5 U

9 Supplement Code. Field 18.
$\mathrm{U}=\mathrm{PVC}$ sleeve with end disk. Other sleeve material available as option upon request.
8 Case Size. Fields 15, 16 and 17.
The single letter diameter code is inserted in field 15.
$\mathrm{C}=\varnothing 50.8 \mathrm{~mm}(\varnothing 2.000$ ")
$\mathrm{D}=\varnothing 63.5 \mathrm{~mm}\left(\varnothing 2.500^{\prime \prime}\right)$
$\mathrm{E}=\varnothing 76.2 \mathrm{~mm}(\varnothing 3.000$ ")
$\mathrm{F}=\varnothing 89.0 \mathrm{~mm}(\varnothing 3.500$ ")
The double character length code is inserted in fields 16 and 17. For lengths $\leq 99 \mathrm{~mm}$, insert the actual length rounded to nearest millimeter. For lengths of 100 mm or more, insert the appropriate alpha numeric code as indicated below.
$92=92 \mathrm{~mm}\left(3.625^{\prime \prime}\right)$
$A 5=105 \mathrm{~mm}\left(4.125^{\prime \prime}\right)$
$B 7=117 \mathrm{~mm}\left(4.625^{\prime \prime}\right)$
D0 $=130 \mathrm{~mm}$ (5.125")
$E 3=143 \mathrm{~mm}\left(5.625^{\prime \prime}\right)$
F5 $=155 \mathrm{~mm}\left(6.125^{\prime \prime}\right)$
$\mathrm{J} 1=181 \mathrm{~mm}$ (7.125")
$K 0=190 \mathrm{~mm}(7.500 ")$
M9 = 219 mm (8.625")
Capacitance Tolerance. Field 14.
$M= \pm 20 \%$
Capacitance. Fields 11, 12 and 13.
Expressed in Microfarads. The first two digits are significant figures inserted in fields 11 and 12, and the third digit inserted in field 13 indicates the number of zeros for capacitance of $10 \mu \mathrm{~F}$ or more. R indicates the decimal point for capacitance less than $10 \mu \mathrm{~F}$ (e.g. $3 \mathrm{R} 3=3.3 \mu \mathrm{~F} ; 330=33 \mu \mathrm{~F} ; 331=330 \mu \mathrm{~F}$; $332=3,300 \mu \mathrm{~F} ; 333=33,000 \mu \mathrm{~F})$.
. 10
$\mathrm{N}=$ None.
C = Three-footed clamp.
$\mathrm{S}=$ Stud mount. The mounting nut is not included with stud mount orders. It must be ordered separately.
4 Terminal Type. Fields 8 and 9
HP $=$ High post 10-32 NF-2B screw thread.
$\mathrm{HL}=$ High post M5x0.8 screw thread.
CD $=$ M5x0.8 screw thread.
$\mathrm{CP}=$ Low post $1 / 4-28 \mathrm{NF}-2 \mathrm{~B}$ screw thread.
$\mathrm{CH}=$ High post $1 / 4-28 \mathrm{NF}-2 \mathrm{~B}$ screw thread.
$\mathrm{CA}=$ Low post M6x1 screw thread.
CS = High post M6x1 screw thread.
DC Rated Voltage. Fields 5, 6 and 7.
Expressed in Volts. The first two digits are significant figures inserted in fields 5 and 6, and the third digit inserted in field 7 indicates the number of zeros for rated voltage of 10VDC or more. R indicates the decimal point for rated voltage less than 10 VDC (e.g. $4 \mathrm{RO}=4.0 \mathrm{VDC} ; 400=40 \mathrm{VDC} ; 401=400 \mathrm{VDC}$).

Enter the 3-letter/digit series name in fields 2, 3 and 4. If the series name is only 2 letters/digits, place a dash in field 4. For a series name with more than 3 letters/digits, refer to the individual series for the appropriate 3 -field series name.Capacitor Type. Field 1
Aluminum Electrolytic Capacitor (Polar).

U37X serires

Part Numbering System for U37X Series When ordering, always specify complete 18 -field global part number.

9 Supplement Code. Field 18.
U = PVC sleeve with end disk.
Other sleeve material available as option upon request.
8 Case Size. Fields 15, 16 and 17.
The single letter diameter code is inserted in field 15.
$\mathrm{C}=\varnothing 50.8 \mathrm{~mm}(\varnothing 2.000 ")$
$\mathrm{D}=\varnothing 63.5 \mathrm{~mm}(\varnothing 2.500 ")$
$\mathrm{E}=\varnothing 76.2 \mathrm{~mm}\left(\varnothing 3.000^{\prime \prime}\right)$
$\mathrm{F}=\varnothing 89.0 \mathrm{~mm}\left(\varnothing 3.500^{\prime \prime}\right)$

The double character length code is inserted in fields 16 and 17. For lengths $\leq 99 \mathrm{~mm}$, insert the actual length rounded to nearest millimeter. For lengths of 100 mm or more, insert the appropriate alpha numeric code as indicated below.
$92=92 \mathrm{~mm}\left(3.625^{\prime \prime}\right)$
$A 5=105 \mathrm{~mm}\left(4.125^{\prime \prime}\right)$
$B 7=117 \mathrm{~mm}\left(4.625^{\prime \prime}\right)$
D0 $=130 \mathrm{~mm}\left(5.125^{\prime \prime}\right)$
$\mathrm{E} 3=143 \mathrm{~mm}\left(5.625^{\prime \prime}\right)$
F5 $=155 \mathrm{~mm}\left(6.125^{\prime \prime}\right)$
$\mathrm{J} 1=181 \mathrm{~mm}$ (7.125")
$K 0=190 \mathrm{~mm}(7.500 ")$
M9 = 219 mm (8.625")
Capacitance Tolerance. Field 14.
$M= \pm 20 \%$
Capacitance. Fields 11, 12 and 13.
Expressed in Microfarads. The first two digits are significant figures inserted in fields 11 and 12, and the third digit inserted in field 13 indicates the number of zeros for capacitance of $10 \mu \mathrm{~F}$ or more. R indicates the decimal point for capacitance less than $10 \mu \mathrm{~F}$ (e.g. $4 \mathrm{R} 7=4.7 \mu \mathrm{~F} ; 470=47 \mu \mathrm{~F} ; 471=470 \mu \mathrm{~F}$; $472=4,700 \mu \mathrm{~F} ; 473=47,000 \mu \mathrm{~F})$.
Mounting Hardware. Field 10.
$\mathrm{N}=$ None.
C = Three-footed clamp.
$\mathrm{S}=$ Stud mount. The mounting nut is not included with stud mount orders. It must be ordered separately.
Terminal Type. Fields 8 and 9.
HP = High post 10-32 NF-2B screw thread.
$\mathrm{HL}=$ High post M5x0.8 screw thread.
CD $=$ M5x0.8 screw thread.
$\mathrm{CP}=$ Low post $1 / 4-28 \mathrm{NF}-2 \mathrm{~B}$ screw thread.
$\mathrm{CH}=$ High post $1 / 4-28$ NF-2B screw thread .
$\mathrm{CA}=$ Low post M6x1 screw thread.
CS = High post M6x1 screw thread.
DC Rated Voltage. Fields 5, 6 and 7.
Expressed in Volts. The first two digits are significant figures inserted in fields 5 and 6, and the third digit inserted in field 7 indicates the number of zeros for rated voltage of 10VDC or more. R indicates the decimal point for rated voltage less than 10 VDC (e.g. $4 R 0=4.0 \mathrm{VDC} ; 400=40 \mathrm{VDC} ; 401=400 \mathrm{VDC}$).

Enter the 3-letter/digit series name in fields 2,3 and 4. If the series name is only 2 letters/digits, place a dash in field 4. For a series name with more than 3 letters/digits, refer to the individual series for the appropriate 3 -field series name.
Capacitor Type. Field 1
Aluminum Electrolytic Capacitor (Polar).

UTOR $_{\text {serres }}$

Part Numbering System for UTOR Series When ordering, always specify complete 18 -field global part number.

ETOR401 CTN 3 9 2 MEA5

9 Supplement Code. Field 18. $\mathrm{M}=\mathrm{PVC}$ sleeve with end disk. $C=P E T$ sleeve with end disk.

Case Size. Fields 15, 16 and 17.
The single letter diameter code is inserted in field 15.

$$
\mathrm{E}=\varnothing 76.2 \mathrm{~mm}\left(\varnothing 3.000^{\prime \prime}\right)
$$

The double character length code is inserted in fields 16 and 17. For lengths $\leq 99 \mathrm{~mm}$, insert the actual length rounded to nearest millimeter. For lengths of 100 mm or more, insert the appropriate alpha numeric code as indicated below.
$54=54 \mathrm{~mm}(2.125 ")$
$67=67 \mathrm{~mm}(2.625$ ")
$79=79 \mathrm{~mm}(3.125$ ")
$92=92 \mathrm{~mm}\left(3.625{ }^{\prime \prime}\right)$
$\mathrm{A} 5=105 \mathrm{~mm}\left(4.125^{\prime \prime}\right)$
$\mathrm{B} 7=117 \mathrm{~mm}\left(4.625^{\prime \prime}\right)$
$D 0=130 \mathrm{~mm}\left(5.125^{\prime \prime}\right)$
$\mathrm{E} 3=143 \mathrm{~mm}\left(5.625^{\prime \prime}\right)$
$\mathrm{F} 5=155 \mathrm{~mm}$ (6.125")
$\mathrm{G} 8=168 \mathrm{~mm}$ (6.625")Capacitance Tolerance. Field 14.

$M= \pm 20 \%$

Capacitance. Fields 11, 12 and 13.
Expressed in Microfarads. The first two digits are significant figures inserted in fields 11 and 12, and the third digit inserted in field 13 indicates the number of zeros for capacitance of $10 \mu \mathrm{~F}$ or more. R indicates the decimal point for capacitance less than $10 \mu \mathrm{~F}$ (e.g. $3 \mathrm{R} 9=3.9 \mu \mathrm{~F} ; 390=39 \mu \mathrm{~F} ; 391=390 \mu \mathrm{~F}$; $392=3,900 \mu \mathrm{~F} ; 393=39,000 \mu \mathrm{~F})$.
ware. Field 10
N = None.
C = Three-footed clamp.
$\mathrm{H}=$ Heat sink kit.
4 Terminal Type. Fields 8 and 9.
CT = M5x0.8 screw thread.
3 DC Rated Voltage. Fields 5, 6 and 7.
Expressed in Volts. The first two digits are significant figures inserted in fields 5 and 6, and the third digit inserted in field 7 indicates the number of zeros for rated voltage of 10VDC or more. R indicates the decimal point for rated voltage less than 10 VDC (e.g. $4 \mathrm{RO}=4.0 \mathrm{VDC} ; 400=40 \mathrm{VDC} ; 401=400 \mathrm{VDC}$).
Series Name. Fields 2, 3 and 4.
Enter the 3-letter/digit series name in fields 2, 3 and 4. If the series name is only 2 letters/digits, place a dash in field 4. For a series name with more than 3 letters/digits, refer to the individual series for the appropriate 3 -field series name.
1
Capacitor Type. Field 1.
Aluminum Electrolytic Capacitor (Polar).

Appendix (Part number)

-Capacitance code

* How to use the table

	1st
2nd	Cap. Value

Capacitance value part

2nd									
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0}$	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
\mathbf{A}	10.5	20.5	30.5	40.5	50.5	60.5	70.5	80.5	90.5
$\mathbf{1}$	11.0	21.0	31.0	41.0	51.0	61.0	71.0	81.0	91.0
\mathbf{B}	11.5	21.5	31.5	41.5	51.5	61.5	71.5	81.5	91.5
$\mathbf{2}$	12.0	22.0	32.0	42.0	52.0	62.0	72.0	82.0	92.0
\mathbf{C}	12.5	22.5	32.5	42.5	52.5	62.5	72.5	82.5	92.5
$\mathbf{3}$	13.0	23.0	33.0	43.0	53.0	63.0	73.0	83.0	93.0
\mathbf{D}	13.5	23.5	33.5	43.5	53.5	63.5	73.5	83.5	93.5
$\mathbf{4}$	14.0	24.0	34.0	44.0	54.0	64.0	74.0	84.0	94.0
\mathbf{E}	14.5	24.5	34.5	44.5	54.5	64.5	74.5	84.5	94.5
$\mathbf{5}$	15.0	25.0	35.0	45.0	55.0	65.0	75.0	85.0	95.0
F	15.5	25.5	35.5	45.5	55.5	65.5	75.5	85.5	95.5
$\mathbf{6}$	16.0	26.0	36.0	46.0	56.0	66.0	76.0	86.0	96.0
\mathbf{G}	16.5	26.5	36.5	46.5	56.5	66.5	76.5	86.5	96.5
$\mathbf{7}$	17.0	27.0	37.0	47.0	57.0	67.0	77.0	87.0	97.0
\mathbf{H}	17.5	27.5	37.5	47.5	57.5	67.5	77.5	87.5	97.5
$\mathbf{8}$	18.0	28.0	38.0	48.0	58.0	68.0	78.0	88.0	98.0
\mathbf{J}	18.5	28.5	38.5	48.5	58.5	68.5	78.5	88.5	98.5
$\mathbf{9}$	19.0	29.0	39.0	49.0	59.0	69.0	79.0	89.0	99.0
K	19.5	29.5	39.5	49.5	59.5	69.5	79.5	89.5	99.5

For less than $10 \mu \mathrm{~F}$, a decimal point position is displayed with R .
For $10 \mu \mathrm{~F}$ or more, capacitance code is set to the first 2 digits and index (1digit).
Treatment of fraction (Refer to the table)
Example of conversion

Real cap.	The first 2 digits	Treatment of fraction	Code		
			11th	12th	13th
$10.0 \mu \mathrm{~F} \rightarrow$	$10.0 \rightarrow$	$10.0 \rightarrow$	1	0	0
$10.1 \mu \mathrm{~F} \rightarrow$	$10.1 \rightarrow$	$10.0 \rightarrow$	1	0	0
$10.2 \mu \mathrm{~F} \rightarrow$	$10.2 \rightarrow$	$10.0 \rightarrow$	1	0	0
$10.3 \mu \mathrm{~F} \rightarrow$	$10.3 \rightarrow$	$10.5 \rightarrow$	1	A	0
$10.4 \mu \mathrm{~F} \rightarrow$	$10.4 \rightarrow$	$10.5 \rightarrow$	1	A	0
$10.5 \mu \mathrm{~F} \rightarrow$	$10.5 \rightarrow$	$10.5 \rightarrow$	1	A	0
$10.6 \mu \mathrm{~F} \rightarrow$	$10.6 \rightarrow$	$10.5 \rightarrow$	1	A	0
$10.7 \mu \mathrm{~F} \rightarrow$	$10.7 \rightarrow$	$10.5 \rightarrow$	1	A	0
$10.8 \mu \mathrm{~F} \rightarrow$	$10.8 \rightarrow$	$11.0 \rightarrow$	1	1	0
$10.9 \mu \mathrm{~F} \rightarrow$	$10.9 \rightarrow$	$11.0 \rightarrow$	1	1	0
$11.0 \mu \mathrm{~F} \rightarrow$	$11.0 \rightarrow$	$11.0 \rightarrow$	1	1	0
$132 \mu \mathrm{~F} \rightarrow$	$13.2 \rightarrow$	$13.0 \rightarrow$	1	3	1
$133 \mu \mathrm{~F} \rightarrow$	$13.3 \rightarrow$	$13.5 \rightarrow$	1	D	1
$167 \mu \mathrm{~F} \rightarrow$	$16.7 \rightarrow$	$16.5 \rightarrow$	1	G	1
$168 \mu \mathrm{~F} \rightarrow$	$16.8 \rightarrow$	$17.0 \rightarrow$	1	7	1
$1110 \mu \mathrm{~F} \rightarrow$	$11.1 \rightarrow$	$11.0 \rightarrow$	1	1	2
$1340 \mu \mathrm{~F} \rightarrow$	$13.4 \rightarrow$	$13.5 \rightarrow$	1	D	2
$13200 \mu \mathrm{~F} \rightarrow$	$13.2 \rightarrow$	$13.0 \rightarrow$	1	3	3
$13600 \mu \mathrm{~F} \rightarrow$	$13.6 \rightarrow$	$13.5 \rightarrow$	1	D	3
$270000 \mu \mathrm{~F} \rightarrow$	$27.0 \rightarrow$	$27.0 \rightarrow$	2	7	4

Case length (Radial lead type)

Case length [mm]	16th	17th												
0.0	-	-	1.0	0	1	2.0	0	2	3.0	0	3	4.0	0	4
0.1	0	B	1.1	1	B	2.1	2	B	3.1	3	B	4.1	4	B
0.2	0	C	1.2	1	C	2.2	2	C	3.2	3	C	4.2	4	C
0.3	0	D	1.3	1	D	2.3	2	D	3.3	3	D	4.3	4	D
0.4	0	E	1.4	1	E	2.4	2	E	3.4	3	E	4.4	4	E
0.5	0	F	1.5	1	F	2.5	2	F	3.5	3	F	4.5	4	F
0.6	0	G	1.6	1	G	2.6	2	G	3.6	3	G	4.6	4	G
0.7	0	H	1.7	1	H	2.7	2	H	3.7	3	H	4.7	4	H
0.8	0	J	1.8	1	J	2.8	2	J	3.8	3	J	4.8	4	J
0.9	0	K	1.9	1	K	2.9	2	K	3.9	3	K	4.9	4	K
Case length [mm]	16th	17th												
5.0	0	5	6.0	0	6	7.0	0	7	8.0	0	8	9.0	0	9
5.1	5	B	6.1	6	B	7.1	7	B	8.1	8	B	9.1	9	B
5.2	5	C	6.2	6	C	7.2	7	C	8.2	8	C	9.2	9	C
5.3	5	D	6.3	6	D	7.3	7	D	8.3	8	D	9.3	9	D
5.4	5	E	6.4	6	E	7.4	7	E	8.4	8	E	9.4	9	E
5.5	5	F	6.5	6	F	7.5	7	F	8.5	8	F	9.5	9	F
5.6	5	G	6.6	6	G	7.6	7	G	8.6	8	G	9.6	9	G
5.7	5	H	6.7	6	H	7.7	7	H	8.7	8	H	9.7	9	H
5.8	5	J	6.8	6	J	7.8	7	J	8.8	8	J	9.8	9	J
5.9	5	K	6.9	6	K	7.9	7	K	8.9	8	K	9.9	9	K
Case length [mm]	16th	17th												
10.0	1	0	11.0	1	1	12.0	1	2	13.0	1	3	14.0	1	4
10.1	A	1	11.1	B	1	12.1	C	1	13.1	D	1	14.1	E	1
10.2	A	2	11.2	B	2	12.2	C	2	13.2	D	2	14.2	E	2
10.3	A	3	11.3	B	3	12.3	C	3	13.3	D	3	14.3	E	3
10.4	A	4	11.4	B	4	12.4	C	4	13.4	D	4	14.4	E	4
10.5	A	5	11.5	B	5	12.5	C	5	13.5	D	5	14.5	E	5
10.6	A	6	11.6	B	6	12.6	C	6	13.6	D	6	14.6	E	6
10.7	A	7	11.7	B	7	12.7	C	7	13.7	D	7	14.7	E	7
10.8	A	8	11.8	B	8	12.8	C	8	13.8	D	8	14.8	E	8
10.9	A	9	11.9	B	9	12.9	C	9	13.9	D	9	14.9	E	9

Product specifications in this catalog are subject to change without notice.Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

Case length $[\mathrm{mm}]$	16th	17th
15.0	1	5
15.1	F	1
15.2	F	2
15.3	F	3
15.4	F	4
15.5	F	5
15.6	F	6
15.7	F	7
15.8	F	8
15.9	F	9

Case length $[\mathrm{mm}]$	16th	17th
16.0	1	6
16.1	G	1
16.2	G	2
16.3	G	3
16.4	G	4
16.5	G	5
16.6	G	6
16.7	G	7
16.8	G	8
16.9	G	9

Case length $[\mathrm{mm}]$	16th	17th
17.0	1	7
17.1	H	1
17.2	H	2
17.3	H	3
17.4	H	4
17.5	H	5
17.6	H	6
17.7	H	7
17.8	H	8
17.9	H	9

Case length $[\mathrm{mm}]$	16th	17th
18.0	1	8
18.1	J	1
18.2	J	2
18.3	J	3
18.4	J	4
18.5	J	5
18.6	J	6
18.7	J	7
18.8	J	8
18.9	J	9

Case length $[\mathrm{mm}]$	$\mathbf{1 6 t h}$	$\mathbf{1 7 t h}$
19.0	1	9
19.1	K	1
19.2	K	2
19.3	K	3
19.4	K	4
19.5	K	5
19.6	K	6
19.7	K	7
19.8	K	8
19.9	K	9

Case length [mm]	16th	17th
20.0	2	0
20.5	L	1
21.0	2	1
21.5	L	3
22.0	2	2
22.5	L	5
23.0	2	3
23.5	L	7
$\mathbf{2 4 . 0}$	2	4
24.5	L	9
25.0	2	5
25.5	M	1
26.0	2	6
26.5	M	3
27.0	2	7
$\mathbf{2 7 . 5}$	M	5
$\mathbf{2 8 . 0}$	2	8
28.5	M	7
29.0	2	9
29.5	M	9

Case length [mm]	16th	17th
$\mathbf{3 0 . 0}$	3	0
$\mathbf{3 0 . 5}$	N	1
31.0	3	1
31.5	N	3
$\mathbf{3 2 . 0}$	3	2
32.5	N	5
33.0	3	3
$\mathbf{3 3 . 5}$	N	7
34.0	3	4
34.5	N	9
$\mathbf{3 5 . 0}$	3	5
35.5	P	1
$\mathbf{3 6 . 0}$	3	6
36.5	P	3
$\mathbf{3 7 . 0}$	3	7
$\mathbf{3 7 . 5}$	P	5
$\mathbf{3 8 . 0}$	3	8
$\mathbf{3 8 . 5}$	P	7
39.0	3	9
39.5	P	9

Case length $[\mathrm{mm}]$	16th	17th
40.0	4	0
40.5	Q	1
41.0	4	1
41.5	Q	3
42.0	4	2
42.5	Q	5
43.0	4	3
43.5	Q	7
44.0	4	4
44.5	Q	9
45.0	4	5
45.5	R	1
46.0	4	6
46.5	R	3
47.0	4	7
47.5	R	5
48.0	4	8
48.5	R	7
49.0	4	9
49.5	R	9

Case length [mm]	$\mathbf{1 6 t h}$	$\mathbf{1 7 t h}$
$\mathbf{5 0 . 0}$	5	0
$\mathbf{5 0 . 5}$	S	1
$\mathbf{5 1 . 0}$	5	1
$\mathbf{5 1 . 5}$	S	3
$\mathbf{5 2 . 0}$	5	2
$\mathbf{5 2 . 5}$	S	5
$\mathbf{5 3 . 0}$	5	3
$\mathbf{5 3 . 5}$	S	7
$\mathbf{5 4 . 0}$	5	4
$\mathbf{5 4 . 5}$	S	9
$\mathbf{5 5 . 0}$	5	5
$\mathbf{5 5 . 5}$	T	1
$\mathbf{5 6 . 0}$	5	6
$\mathbf{5 6 . 5}$	T	3
$\mathbf{5 7 . 0}$	5	7
$\mathbf{5 7 . 5}$	T	5
$\mathbf{5 8 . 0}$	5	8
$\mathbf{5 8 . 5}$	T	7
$\mathbf{5 9 . 0}$	5	9
$\mathbf{5 9 . 5}$	T	9

Case length $[\mathrm{mm}]$	$\mathbf{1 6 t h}$	$\mathbf{1 7 t h}$
$\mathbf{6 0 . 0}$	6	0
60.5	U	1
61.0	6	1
61.5	U	3
62.0	6	2
$\mathbf{6 2 . 5}$	U	5
63.0	6	3
63.5	U	7
64.0	6	4
$\mathbf{6 4 . 5}$	U	9
$\mathbf{6 5 . 0}$	6	5
65.5	V	1
$\mathbf{6 6 . 0}$	6	6
$\mathbf{6 6 . 5}$	V	3
$\mathbf{6 7 . 0}$	6	7
$\mathbf{6 7 . 5}$	V	5
$\mathbf{6 8 . 0}$	6	8
68.5	V	7
$\mathbf{6 9 . 0}$	6	9
$\mathbf{6 9 . 5}$	V	9

Case length [mm]	16th	17th	Case length [mm]	16th	17th
70.0	7	0	80.0	8	0
70.5	W	1	80.5	Y	1
71.0	7	1	81.0	8	1
71.5	W	3	81.5	Y	3
72.0	7	2	82.0	8	2
72.5	W	5	82.5	Y	5
73.0	7	3	83.0	8	3
73.5	W	7	83.5	Y	7
74.0	7	4	84.0	8	4
74.5	W	9	84.5	Y	9
75.0	7	5	85.0	8	5
75.5	X	1	85.5	Z	1
76.0	7	6	86.0	8	6
76.5	X	3	86.5	Z	3
77.0	7	7	87.0	8	7
77.5	X	5	87.5	Z	5
78.0	7	8	88.0	8	8
78.5	X	7	88.5	Z	7
79.0	7	9	89.0	8	9
79.5	X	9	89.5	Z	9

-Case length (Snap-in type / Screw mount terminal type)

Supplement code
 Conductive Polymer Aluminum Solid Capacitors (Chip and Radial lead type)
 Conductive Polymer Hybrid Aluminum Electrolytic Capacitors (Chip and Radial lead type)
 Aluminum Electrolytic Capacitors (Chip type)

	Terminal plating material	
	Sn	$\mathrm{Sn}-\mathrm{Bi}$
Coating case	S	G

Aluminum Electrolytic Capacitors (Radial lead and Snap-in type)

		Terminal plating material	
		Sn	Sn-Bi
	PET	S	D
	Coating case	H	G
	Polyolefin	L	-
	PVC	M	-

* Standard design of "environmental friendly" snap-in are not equipped with a plastic disk on the top of the can case. We also produce snap-in type with "Plastic disk, PVC sleeve and Sn terminal plating".

Aluminum Electrolytic Capacitors (Screw mount terminal type)

Outer sleeve	Supplement code
PVC	U
Polyolefin	S
PET	C

[^1]
TAPING SPECIFICATIONS (Applicable standard JIS C 0806-3)

SURFACE MOUNT TYPE (TAPING)

-CARRIER TAPE [mm]

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

[mm]

Product specifications in this catalog are subject to change without notice.Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications

\section*{- REEL DIMENSIONS [mm]

 -POLARITY
 | Alchip ${ }^{\text {TM }}$-MVE/MZT/MZS | | Feed Direction |
| :---: | :---: | :---: |
| | MZL/MZR/MZJ | |
| | MZA / MVY / MZF | POOOO |
| | MZE/MZK/MLA | 1×1 |
| | MLF/MLE/MLK | $+\square+$ |
| | MVL/MVJ/MXB | |
| | MHS / MVH/MHL | |
| | $\mathrm{MHB} / \mathrm{MHJ} / \mathrm{MHK}$ | |
| NP CAP ${ }^{\text {TM }}$ | -PMF | |
| | PXN/PXT/PXJ/PXG | |
| | PXK/PXS/PXF/PXE | |
| | PXA/PXD/PXH | |
| Hybrid | -HXF/HXE/HXJ/HXC | |
 SURFACE MOUNT TYPE (TRAY)
 -DIMENSIONS [mm]
 W1
 }

-QUANTITY PER REEL/BOX

Series	Size code	Quantity (pcs/reel)	$\begin{aligned} & \text { Quantity } \\ & \text { (pcs/box) } \end{aligned}$	$\begin{gathered} \mathrm{W}_{1} \\ (\mathrm{~mm}) \end{gathered}$
Alchip ${ }^{\text {TM }}$ MVE/MZT MZS/MZL MZR/MZJ MZA/MVY MZF/MZE MZK / MLA MLF/MLE MLK/MVL MVJ/MXB MHS/MVH MHL/MHB MHJ/MHK Hybrid HXF HXE/HXJ HXC/HXD NPCAP ${ }^{\text {TM }}$ PMF PXN/PXT PXJ/PXG PXK/PXS PXF/PXE PXA/PXD PXH	D55,D60,D61	2,000	10,000	14
	D73	1,500	7,500	14
	E55,E60,E61	1,000	5,000	14
	E73	1,000	5,000	18
	F55,F60,F61,F73	1,000	5,000	18
	F80	900	4,500	18
	F90	800	4,000	18
	H63	1,000	5,000	18
	HAO	500	1,500	26
	JAO	500	1,500	26
	JC5	400	1,200	26
	JHO	200	600	34
	KE0	250*1	750*1	34
	KG5	200*1	600*1	34
	KNO	150	450	34
	LH0	175*1	350*1	46
	LNO	$125^{* 1}$	250*1	46
	MHO	$150{ }^{* 1}$	300*1	46
	MNO	$100^{* 1}$	200*1	46
	E40,E46,E61	1,000	10,000	14
	F30	2,000	10,000	18
	F46,F61	1,000	7,000	18
	F80	900	6,300	18
	FA0	750	5,250	18
	H70	1,000	6,000	26
	H80	900	5,400	26
	HAO	500	3,000	26
	HCO	400	1,200	26
	J80	500	3,000	26
	JAO	500	3,000	26
	JC0	400	1,200	26

*1 : Changed the packing quantity. (Size Code : KEO to MNO)
-TRAY CODE :TR

Size code	H $[\mathrm{mm}]$	W1 $[\mathrm{mm}]$	H 1 $[\mathrm{~mm}]$	Quantity $[\mathrm{pcs} /$ tray $]$	Quantity $[\mathrm{pcs} / \mathrm{box}]$
KE0 \& KG5	21.0	284	18.5	120	600
LH0 \& LN0	28.0	284	24.0	80	400
MHO \& MNO	28.0	284	24.0	60	300

VIBRATION RESISTANT STRUCTURE (Terminal code : G)

- DIMENSIONS [mm]
-Terminal code : G

Note : $\mathrm{L} \pm 0.5$ for HAO to JHO

\ominus
ZZA : Dummy terminals

- Size code : KEO to MNO 0.3 max.

$\llcorner \pm 0.5$
: Dummy terminals
\&RECOMMENDED SOLDER LAND

The vibration resistant model supports the vibration condition of 30G.
Since vibration is affected by solder thickness and other characteristics and conditions, please contact us for details.

Size code	Dimensions of products (mm)									Solder land (mm)		
	D	L	A	B	C	W	P	(a)	(b)	a	b	c
F61	6.3	5.8	6.6	6.6	7.2	0.5 to 0.8	1.9	(0.7)	(1.4)	1.9	3.5	3.3
F80	6.3	7.7	6.6	6.6	7.2	0.5 to 0.8	1.9	(0.7)	(1.4)	1.9	3.5	3.3
HAO	8.0	10.0	8.3	8.3	9.0	0.7 to 1.1	3.1	(0.5)	(1.8)	3.1	4.2	3.5
JAO	10.0	10.0	10.3	10.3	11.0	0.7 to 1.1	4.5	(0.5)	(2.1)	4.5	4.4	3.5
JC5	10.0	12.5	10.3	10.3	11.0	0.7 to 1.1	4.5	(0.5)	(2.1)	4.5	4.4	3.5
JH0	10.0	16.5	10.3	10.3	11.0	1.0 to 1.3	4.2	(0.5)	(2.1)	4.0	4.7	3.8
KEO	12.5	13.5	13.0	13.0	13.7	1.0 to 1.3	4.2	(1.3)	(3.0)	3.4	6.3	9.3
KG5	12.5	16.0	13.0	13.0	13.7	1.0 to 1.3	4.2	(1.3)	(3.0)	3.4	6.3	9.3
KNO	12.5	21.5	13.0	13.0	13.7	1.0 to 1.3	4.2	(1.3)	(3.0)	3.4	6.3	9.3
LHO	16.0	16.5	17.0	17.0	18.0	1.0 to 1.3	6.5	(2.0)	(3.0)	4.7	7.8	9.6
LNO	16.0	21.5	17.0	17.0	18.0	1.0 to 1.3	6.5	(2.0)	(3.0)	4.7	7.8	9.6
MHO	18.0	16.5	19.0	19.0	20.0	1.0 to 1.3	6.5	(2.0)	(4.0)	4.7	8.8	9.6
MNO	18.0	21.5	19.0	19.0	20.0	1.0 to 1.3	6.5	(2.0)	(4.0)	4.7	8.8	9.6
(); Ref.												

RADIAL LEAD TYPE TAPING SPECIFICATIONS (Applicable standard JIS C 0806-2)

Conductive Polymer Aluminum Solid Capacitors

Conductive Polymer Hybrid Aluminum Electrolytic Capacitors

DIMENSION [mm]

Fig. 1

Taping Code : TX $\phi \mathrm{D}=\phi 5$

Fig. 2

Taping Code : TD $\phi \mathrm{D}=\phi 6.3$ to 10

Code	Taping Code	Case size		$\phi \mathrm{d}$	P	P_{0}	P_{1}	P_{2}	F	W	W_{0}	W_{1}	W_{2}	H	H_{1}	$\phi \mathrm{D}_{0}$	$\triangle h_{1}$	$\triangle h_{2}$	t	T	Fig
		¢ D	A																		
tol.	-	-	-	± 0.05	± 1.0	± 0.2	± 0.7	± 1.0	± 0.8	± 0.5	min.	± 0.5	max.	± 0.75	max.	± 0.2	± 2.0	± 2.0	± 0.3	± 1.0	
	TX	5	8	0.5	12.7	12.7	5.35	6.35	2.0*2	18	10	9.0	2.5	18.5	28.25	4.0	0	0	0.7	0	1
	TD	6.3	5	0.45	12.7	12.7	5.1	6.35	2.5	18	10	9.0	2.5	18.5	28.25	4.0	0	0	0.7	0	2
		6.3	8	0.6	12.7	12.7	5.1	6.35	2.5	18	10	9.0	2.5	18.5	$28.75^{* 1}$	4.0	0	0	0.7	0	2
		8	8	0.6	12.7	12.7	4.6	6.35	3.5	18	10	9.0	2.5	20.0	29.75	4.0	0	0	0.7	0	2
		8	11.5	$0.6{ }^{* 1}$	12.7	12.7	4.6	6.35	3.5	18	10	9.0	2.5	20.0	33.75	4.0	0	0	0.7	0	2
		8	16	0.6	12.7	12.7	4.6	6.35	3.5	18	10	9.0	2.5	20.0	38.25	4.0	0	0	0.7	0	2
		8	20	0.6	12.7	12.7	4.6	6.35	3.5	18	10	9.0	2.5	20.0	42.25	4.0	0	0	0.7	0	2
		10	10.5	0.6	12.7	12.7	3.85	6.35	5.0	18	10	9.0	2.5	18.5	30.75	4.0	0	0	0.7	0	2
		10	11.5	$0.6{ }^{* 1}$	12.7	12.7	3.85	6.35	5.0	18	10	9.0	2.5	18.5	32.25	4.0	0	0	0.7	0	2
		10	12.5	0.6	12.7	12.7	3.85	6.35	5.0	18	10	9.0	2.5	18.5	33.25	4.0	0	0	0.7	0	2
		10	16	0.6	12.7	12.7	3.85	6.35	5.0	18	10	9.0	2.5	18.5	36.75	4.0	0	0	0.7	0	2
		10	20	0.6	12.7	12.7	3.85	6.35	5.0	18	10	9.0	2.5	18.5	40.75	4.0	0	0	0.7	0	2

* 1 : Each product family has different value. Please refer to each page.
* 2 : For case size $\phi 5 \times 8$ (Taping code : TX), H dimension shall be 2.0 ${ }^{+0.5-0.0}$

TAPING CODE

Example

QUANTITY PER AMMO PACK

Ammo pack box

Typical example

$\begin{gathered} \text { Case size } \\ \phi \mathrm{D} \times \mathrm{L}(\mathrm{~mm}) \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \mathbf{A} \\ (\mathrm{mm}) \end{array}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{C}}$	Quantity (pcs.)
\$5	$\mathrm{L}=8 \mathrm{~mm}$	240	51	336	2,000
¢6.3	$\mathrm{L}=5$ \& 8mm	285	51	336	2,000
¢8	$\mathrm{L}=8$ to 11.5 mm	240	51	336	1,000
	$\mathrm{L}=16 \mathrm{~mm}$	240	56	336	
	$\mathrm{L}=20 \mathrm{~mm}$	240	62	336	
¢10	$\mathrm{L}=10.5$ to 12.5 mm	190	51	337	500
	$\mathrm{L}=16 \mathrm{~mm}$	308	56	337	800
	$\mathrm{L}=20 \mathrm{~mm}$	308	62	337	

RADIAL LEAD TYPE TAPING SPECIFICATIONS (Applicable standard JIS C 0806-2)

Aluminum Electrolytic Capacitors

\rightarrow DIMENSION [mm]

Fig. 1

Taping Code : TC $\phi \mathrm{D}=\phi 5$ to 8

Fig. 2

Taping Code :TD $\phi \mathrm{D}=\phi 5$

Fig. 3

Taping Code :TD $\phi \mathrm{D}=\phi 6.3$ to 12.5

Fig. 4

Taping Code : TE
$\phi \mathrm{D}=\phi 12.5$

Code	Taping Code	Cas	se size	$\phi \mathrm{d}$	P	P_{0}	P_{1}	P_{2}	F	W	W_{0}	W	W_{2}	H	H_{0}	H_{1}	Fig
		¢ D	A														
tol.		-	-	± 0.05	± 1.0	± 0.2	± 0.7	± 1.0	± 0.8	± 0.5	min.	± 0.5	max.	± 0.75	± 0.5		
	TD	5	11 to 15	$0.5^{* 1}$	12.7	12.7	5.1 3.85	6.35	2.5	18.0	10.0	9.0	1.5	18.5	$\overline{16.0}$		2
	TD						5.1	6.35	2.5	18.0	10.0	9.0	1.5	18.5	16.0		3
	TC	6.3	11 to 15	0.5	12.7	12.7	3.85		5								1
	TD	8	11.5 to 20	0.6	12.7	12.7	$\frac{4.6}{3.85}$	6.35	$\begin{gathered} 3.5 \\ 5 \end{gathered}$	18.0	10.0	9.0	1.5	20.0	16.0		1
tol.		± 0.5	max.	± 0.05	± 1.0	± 0.3	± 0.7	± 1.3	± 0.8	± 0.5	min.	± 0.5	max.	± 2.0	-	4\pm는 븡 도 ©	
	TD	10	21	$0.6{ }^{* 1}$	12.7	12.7	3.85	6.35	5	18.0	12.5	9.0	1.5	18.0	-		3
	TD	12.5	26	$0.6{ }^{* 1}$	15	15	5.0	7.5	5	18.0	12.5	9.0	1.5	18.0	-	$\frac{0}{0}$	3
	TE			$0.6{ }^{\text {* }}$	25.4	12.7	3.85	6.35	5	18.0	12.5	9.0	1.5	18.0	-		4

* 1 : Each product family has different value. Please refer to each page.
* 2 : The taping for size $\phi 16$ and $\phi 18$ is available as a custom design.
* 3 : For the Taping code TD products with case diameter $\geqq 12.5 \mathrm{~mm}$, you can also select an option (Taping code: TS) that enhanced taping packaging.

TAPING CODE

Example

QUANTITY PER AMMO PACK

Ammo pack box

Typical example

$\begin{gathered} \text { Case size } \\ \phi \mathrm{D} \times \mathrm{L}(\mathrm{~mm}) \end{gathered}$		$\underset{(\mathrm{mm})}{\mathrm{A}}$	$\begin{gathered} \text { B } \\ (\mathrm{mm}) \end{gathered}$	Quantity (pcs.)
¢5	L=11 to 15 mm	232	51	2,000
	$\mathrm{L}=17 \mathrm{~mm}$	235	60	
\$6.3	L=11 to 15 mm	284	51	2,000
	$\mathrm{L}=17 \mathrm{~mm}$	284	55	
¢8	L=11.5 to 15 mm	232	51	1,000
	$\mathrm{L}=17$ \& 20 mm	235	60	
\$10	L $\leq 16 \mathrm{~mm}$	308	56	800
	L=17 to 20 mm	308	62	
	$\mathrm{L}=21$ to 25 mm	308	67	
	L=26 to 30 mm	308	71	500
¢ 12.5	$\mathrm{L} \leqq 16 \mathrm{~mm}$	308	62	500
	L=17 to 25 mm	308	67	

RADIAL LEAD TYPE (CUT/FORMED LEAD)

The following lead configurations are available. When ordering, please indicate the type of lead configurations by using the appropriate supplement code, such as C3, FC, MC or RC in the product part number.

*4 Please refer to dimensions of each series for lead-wire diameter ($\phi \mathrm{d})$.

[^0]: *1 Negative terminal : Mesh marking
 *2 Use the dummy terminals for mechanical support only.
 The dummy terminals must not be connected to any circuit trace on PC board, be sure to electrically isolate from the negative and the positive terminals.

[^1]: * For the screw-mount type, the standard design has a plastic disk on the bottom side.

