
Vishay Semiconductors

High Performance Schottky Rectifier, 400 A

www.vishay.com

PRODUCT SUMMARY				
I _{F(AV)}	400 A			
V _R	45 V			
Package	TO-244			
Circuit	Two diodes common cathode			

FEATURES

- 150 °C T_J operation
- Center tap module
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- UL approved file E222165
- · Designed and qualified for industrial level
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The VS-400CNQ045PbF center tap, high current, Schottky rectifier module has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, welding, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VALUES	UNITS				
I _{F(AV)}	Rectangular waveform	400	А				
V _{RRM}		45	V				
I _{FSM}	t _p = 5 μs sine	29 000	А				
V _F	200 A _{pk} , T _J = 125 °C (per leg)	0.52	V				
TJ	Range	-55 to 150	°C				

VOLTAGE RATINGS			
PARAMETER	SYMBOL	VS-400CNQ045PbF	UNITS
Maximum DC reverse voltage	V _R	45	V
Maximum working peak reverse voltage	V _{RWM}	45	v

ABSOLUTE MAXIMUM RATINGS							
PARAMETER		SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum average forward currentper leg			50.04		200		
See fig. 5	per device	$I_{F(AV)}$ 50 % duty cycle at T _C = 114 °C, rectangular waveform		400	А		
Maximum peak one cycle non-repetitive			5 µs sine or 3 µs rect. pulse	Following any rated load condition and with rated	29 000		
surge current per leg See fig. 7		I _{FSM}	FSM	10 ms sine or 6 ms rect. pulse	V _{RRM} applied	3400	
Non-repetitive avalanche energy pe	r leg	E _{AS}	$T_J = 25 \text{ °C}, I_{AS} = 19 \text{ A}, L = 1 \text{ mH}$		180	mJ	
Repetitive avalanche current per leg		I _{AR}	Current decaying linearly to zero in 1 μs Frequency limited by T_J maximum V_A = 1.5 x V_R typical		40	А	

Revision: 26-Mar-14

1

COMPLIANT

VS-400CNQ045PbF

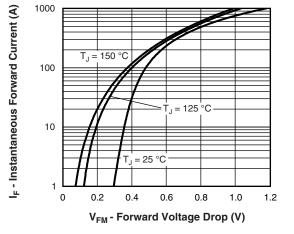
Vishay Semiconductors

ELECTRICA	L SPECI	FICATIO	DNS

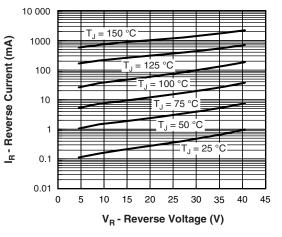
PARAMETER	SYMBOL	TEST C	VALUES	UNITS	
		200 A	T ₁ = 25 °C	0.57	
Maximum forward voltage drop per leg	V _{EM} ⁽¹⁾	400 A	1)=23 0	0.73	v
See fig. 1	VFM (**	200 A	T _{.1} = 125 °C	0.52	v
		400 A	1j = 125 C	0.7	1
Maximum reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated V _B	20	mA
See fig. 2	IRM (''	T _J = 125 °C	$v_{\rm R}$ = Rated $v_{\rm R}$	1.2	А
Threshold voltage	V _{F(TO)}	$T_{J} = T_{J}$ maximum		0.32	V
Forward slope resistance	r _t			0.81	mΩ
Maximum junction capacitance per leg	CT	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz), 25 °C		10 300	pF
Typical series inductance per leg	L _S	From top of terminal hole to mounting plane		5.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R	10 000	V/µs	

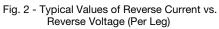
Note

Γ


 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}	-55	-	150	°C	
Thermal resistance, junction to case per leg	P	-	-	0.19		
Thermal resistance, junction to case per module	R _{thJC}	-	-	0.095	°C/W	
Thermal resistance, case to heatsink	R _{thCS}	-	0.10	-		
Weight		-	68	-	g	
		-	2.4	-	oz.	
Mounting torque		35.4 (4)		53.1 (6)		
Mounting torque center hole		30 (3.4)		40 (4.6)	lbf · in (N · m)	
Terminal torque		30 (3.4)	-	44.2 (5)		
Vertical pull		-	-	80	line in	
2" lever pull		-	-	35	lbf ⋅ in	




VS-400CNQ045PbF

Vishay Semiconductors

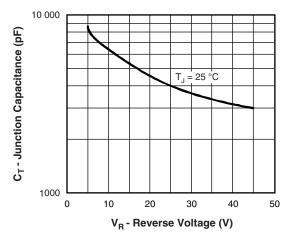
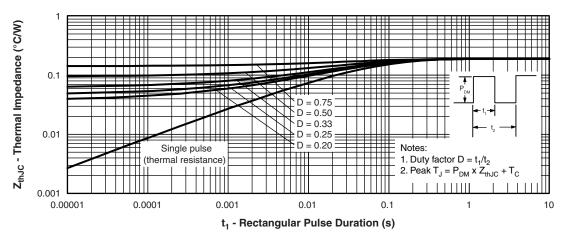
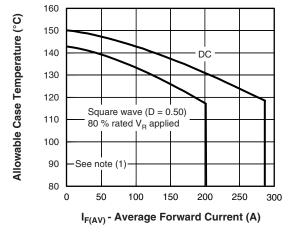
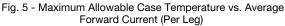



Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)




Revision: 26-Mar-14 3 Document Number: 94204 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-400CNQ045PbF

Vishay Semiconductors

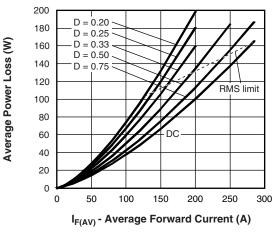
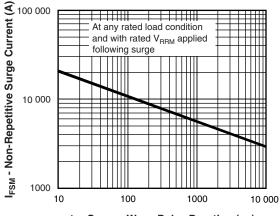



Fig. 6 - Forward Power Loss Characteristics (Per Leg)

t_p - Square Wave Pulse Duration (μs)

Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

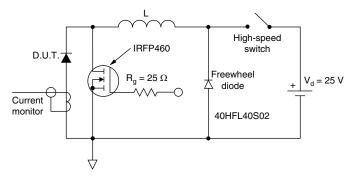


Fig. 8 - Unclamped Inductive Test Circuit

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

 $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see fig. 6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

Revision: 26-Mar-14

4

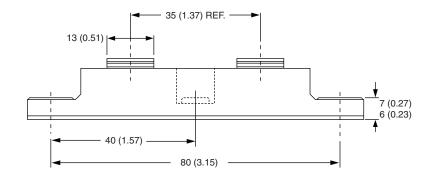
For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

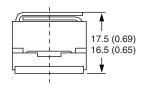
Vishay Semiconductors

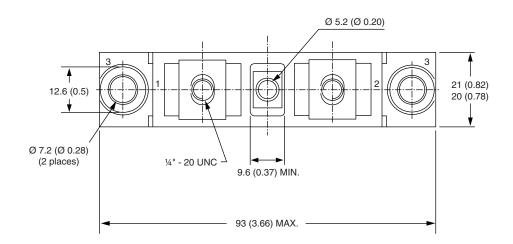
ORDERING INFORMATION TABLE

Device code	VS-	40	0	С	Ν	Q	045	PbF
		2	3	4	5	6	7	8
	 Vishay Semiconductors product Average current rating (x 10) Product silicon identification C = Circuit configuration 							
	5 - N = Not isolated							
	6	Q =	Schottk	ky rectifi	er diode)		
	7 -	Vol	tage rati	ng (045	= 45 V))		
	8 -	Lea	ıd (Pb)-f	ree				

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95021			






Vishay Semiconductors

TO-244

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.