

Photocouplers Photorelay

TLP240GA,TLP240GAF

1. Applications

- · Mechanical relay replacements
- · Security Systems
- Measuring Instruments
- Factory Automation (FA)
- · Amusement Equipment
- · Smart Meters
- · Electricity Meters

2. General

The TLP240GA and TLP240GAF photorelay consist of a photo MOSFET optically coupled to an infrared LED. They are housed in a 4-pin DIP package. They provide an isolation voltage of 5000 Vrms, making them suitable for applications that require reinforced insulation.

3. Features

(1) Halogen-free

For details, see "Devices in Halogen-Free Resin Packages" at the end of this datasheet.

- (2) Normally opened (1-Form-A)
- (3) OFF-state output terminal voltage: 400 V (min)
- (4) Trigger LED current: 3 mA (max)
- (5) ON-state current: 120 mA (max)
- (6) ON-state resistance: 28Ω (max, t < 1 s), 35Ω (max, Continuous)
- (7) Isolation voltage: 5000 Vrms (min)
- (8) Safety standards

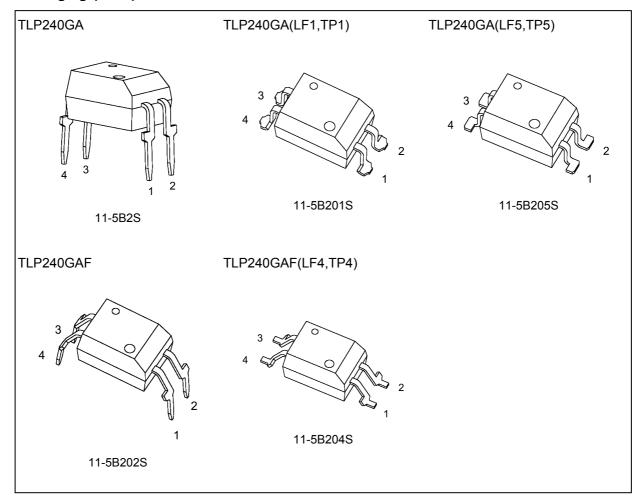
UL-recognized: UL 1577, File No.E67349

cUL-recognized: CSA Component Acceptance Service No.5A File No.E67349

UL-recognized: UL 508, File No.E499232 (Note 1) CQC-approved: GB4943.1, GB8898 Japan Factory VDE-approved: EN 60747-5-5, EN 62368-1 (Note 2)

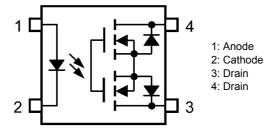
Note 1: Please refer Absolute Maximum Ratings (UL-recognized UL 508) for UL 508 products.

Note 2: When a VDE approved type is needed, please designate the Option (D4).

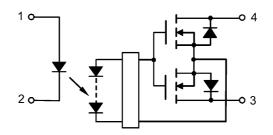

4. Mechanical Parameters

Characteristics	7.62-mm Pitch TLP240GA	10.16-mm Pitch TLP240GAF	Unit
Creepage distances	7.0 (min)	8.0 (min)	mm
Clearance distances	7.0 (min)	8.0 (min)	
Internal isolation thickness	0.4 (min)	0.4 (min)	

Start of commercial production



5. Packaging (Note)



Note: Through-hole type: TLP240GA, TLP240GAF Lead forming option: (LF1), (LF4), (LF5) Taping option: (TP1), (TP4), (TP5)

6. Pin Assignment

7. Internal Circuit

8. Absolute Maximum Ratings (Note) (Unless otherwise specified, T_a = 25 °C)

	Characteristics	Symbol	Note	Rating	Unit	
LED	Input forward current		I _F		30	mA
	Input forward current derating	(T _a ≥ 25 °C)	$\Delta I_F/\Delta T_a$		-0.3	mA/°C
	Input forward current (pulsed)	(100 μs pulse, 100 pps)	I _{FP}		1	Α
	Input reverse voltage		V _R		5	V
	Input power dissipation		P _D		50	mW
	Input power dissipation derating	(T _a ≥ 25 °C)	$\Delta P_D/\Delta T_a$		-0.5	mW/°C
	Junction temperature		Tj		125	°C
Detector	OFF-state output terminal voltage		V _{OFF}		400	V
	ON-state current		I _{ON}		120	mA
	ON-state current derating	$(T_a \ge 25 ^{\circ}C)$	Δl _{ON} /ΔT _a		-1.2	mA/°C
	ON-state current (pulsed)	(t = 100 ms, Duty = 1/10)	I _{ONP}		360	mA
	Output power dissipation		Po		500	mW
	Output power dissipation derating	(T _a ≥ 25 °C)	$\Delta P_{O}/\Delta T_{a}$		-5.0	mW/°C
	Junction temperature		Tj		125	°C
Common	Storage temperature		T _{stg}		-55 to 125	
	Operating temperature		T _{opr}		-40 to 85	
	Lead soldering temperature	(10 s)	T _{sol}		260	
	Isolation voltage	(AC, 60 s, R.H. ≤ 60 %)	BV _S	(Note 1)	5000	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: This device is considered as a two-terminal device: Pins 1 and 2 are shorted together, and pins 3 and 4 are shorted together.

9. Recommended Operating Conditions (Note)

Characteristics	Symbol	Note	Min	Тур.	Max	Unit
Supply voltage	V_{DD}				320	V
Input forward current	I _F		5	7.5	25	mA
ON-state current	I _{ON}		_		120	mA
Operating temperature	T _{opr}		-20	_	65	°C

Note: The recommended operating conditions are given as a design guide necessary to obtain the intended performance of the device. Each parameter is an independent value. When creating a system design using this device, the electrical characteristics specified in this data sheet should also be considered.

Absolute Maximum Ratings (UL-recognized: UL 508) (Note) (Unless otherwise specified, T_a = 25 °C)

	Characteristics	Symbol	Note	Rating	Unit	
LED	Input forward current		I _F		30	mA
	Input forward current derating $(T_a \ge 25 \text{ °C})$		$\Delta I_F/\Delta T_a$		-0.3	mA/°C
	Input forward current (pulsed) (100 μs pulse, 100	pps)	I _{FP}		1	Α
	Input reverse voltage		V_R		5	V
	Input power dissipation		P_{D}		50	mW
	Input power dissipation derating $(T_a \ge 25 \text{ °C})$		$\Delta P_D / \Delta T_a$		-0.5	mW/°C
	Junction temperature		Tj		105	°C
Detector	OFF-state output terminal voltage		V_{OFF}		400	V
	ON-state current		I _{ON}		120	mA
	ON-state current derating $(T_a \ge 25 ^{\circ}\text{C})$		$\Delta I_{ON}/\Delta T_a$		-1.2	mA/°C
	ON-state current (pulsed) (t = 100 ms, duty =	1/10)	I _{ONP}		360	mA
	Output power dissipation		Po		500	mW
	Output power dissipation derating $(T_a \ge 25 \text{ °C})$		$\Delta P_O/\Delta T_a$		-5.0	mW/°C
	Junction temperature		Tj		105	°C
Common	Storage temperature		T _{stg}		-55 to 125	°C
	Case temperature		T _c		105	°C
	Operating temperature		T _{opr}		-40 to 85	°C
	Lead soldering temperature (10 s)		T _{sol}		260	°C
	Isolation voltage (AC, 60 s, R.H. ≤ 60	0 %)	BV _S	(Note 1)	5000	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: This device is considered as a two-terminal device: Pins 1 and 2 are shorted together, and pins 3 and 4 are shorted together.

11. Recommended Operating Conditions (UL-recognized: UL 508) (Note)

Characteristics	Symbol	Note	Min	Тур.	Max	Unit
Supply voltage	V_{DD}			_	320	V
Input forward current	I _F	(Note 1)	5	7.5	19.5	mA
ON-state current	I _{ON}	(Note 1)	_	_	78	mA
Operating temperature	T _{opr}		-20	_	65	°C

Note: The recommended operating conditions are given as a design guide necessary to obtain the intended performance of the device. Each parameter is an independent value. When creating a system design using this device, the electrical characteristics specified in this data sheet should also be considered.

Note 1: The above recommended operating conditions are at $T_a = 60 \, ^{\circ}\text{C}$. However, within the derating range of the characteristic curves of " $I_F - T_a$ ", " $I_{ON} - T_a$ ", it can be used up to 85 $^{\circ}\text{C}$.

Rev.8.0

12. Electrical Characteristics (Unless otherwise specified, T_a = 25 °C)

	Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
LED	Input forward voltage	V _F		I _F = 10 mA	1.1	1.27	1.4	V
	Input reverse current	I _R		V _R = 5 V	_	_	10	μА
	Input capacitance	Ct		V = 0 V, f = 1 MHz	_	50	_	pF
Detector	OFF-state current	I _{OFF}		V _{OFF} = 400 V	_	_	1000	nA
	Output capacitance	C _{OFF}		V = 0 V, f = 1 MHz		80		pF

13. Coupled Electrical Characteristics (Unless otherwise specified, T_a = 25 °C)

Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Trigger LED current	I _{FT}		I _{ON} = 120 mA	_	0.6	3	mA
Return LED current	I _{FC}		I _{OFF} = 10 μA	0.1	_		
ON-state resistance	R _{ON}		I _{ON} = 120 mA, I _F = 5 mA, t < 1 s	_	17	28	Ω
		(Note 1)	I_{ON} = 120 mA, I_F = 5 mA, Continuous	_	22	35	

Note 1: Thermally saturated state.

14. Isolation Characteristics (Unless otherwise specified, T_a = 25 °C)

Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Total capacitance (input to output)	Cs	(Note 1)	V _S = 0 V, f = 1 MHz	_	0.8		pF
Isolation resistance	R _S	(Note 1)	V_S = 500 V, R.H. \leq 60 %	10 ¹²	1014		Ω
Isolation voltage	BVS	(Note 1)	AC, 60 s	5000			Vrms

Note 1: This device is considered as a two-terminal device: Pins 1 and 2 are shorted together, and pins 3 and 4 are shorted together.

15. Switching Characteristics (Unless otherwise specified, T_a = 25 °C)

Characteristics	Symbol	Note	Test Condition	Min	Тур.	Max	Unit
Turn-on time	t _{ON}		See Fig. 15.1.	_	0.6	2	ms
Turn-off time	t _{OFF}		$R_L = 200 \Omega$, $V_{DD} = 20 V$, $I_F = 5 mA$	_	0.2	1	

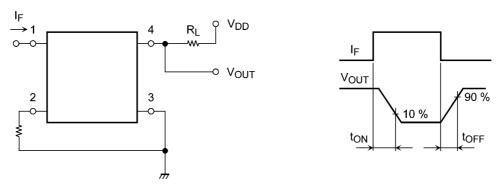


Fig. 15.1 Switching Time Test Circuit and Waveform

16. Characteristics Curves (Note)

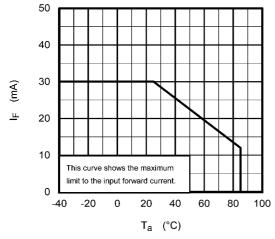


Fig. 16.1 I_F - T_a

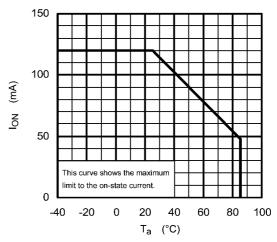


Fig. 16.2 I_{ON} - T_a

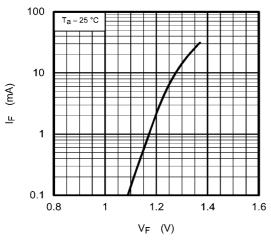


Fig. 16.3 I_F - V_F

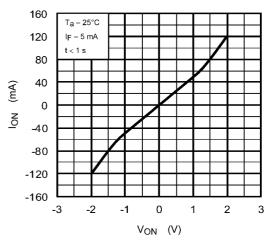


Fig. 16.4 I_{ON} - V_{ON}

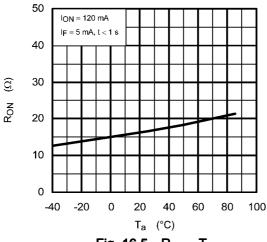


Fig. 16.5 R_{ON} - T_a

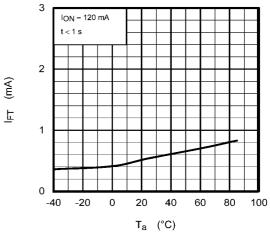


Fig. 16.6 I_{FT} - T_a

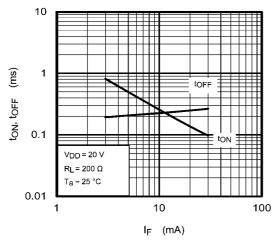


Fig. 16.7 toN, toFF - IF

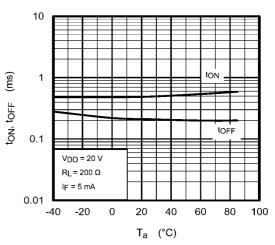


Fig. 16.8 toN, toFF - Ta

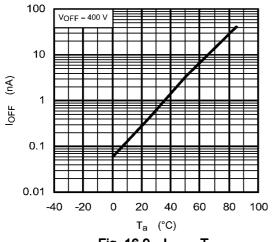


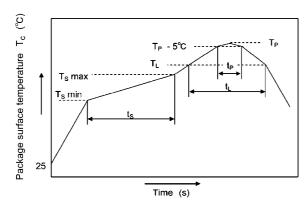
Fig. 16.9 I_{OFF} - T_a

Note: The above characteristics curves are presented for reference only and not guaranteed by production test, unless otherwise noted.

17. Soldering and Storage

17.1. Precautions for Soldering

The soldering temperature should be controlled as closely as possible to the conditions shown below, irrespective of whether a soldering iron or a reflow soldering method is used.


When using soldering reflow.

The soldering temperature profile is based on the package surface temperature.

(See the figure shown below, which is based on the package surface temperature.)

Reflow soldering must be performed once or twice.

The mounting should be completed with the interval from the first to the last mountings being 2 weeks.

	Symbol	Min	Max	Unit
Preheat temperature	Ts	150	200	°C
Preheat time	ts	60	120	s
Ramp-up rate (T _L to T _P)			3	°C/s
Liquidus temperature	TL	2	17	°C
Time above T _L	t _L	60	150	s
Peak temperature	T _P		260	°C
Time during which T_c is between $(T_P - 5)$ and T_P	t _P		30	s
Ramp-down rate (T _P to T _L)			6	°C/s

Fig. 17.1.1 An Example of a Temperature Profile When Lead(Pb)-Free Solder Is Used

· When using soldering flow

Preheat the device at a temperature of $150\,^{\circ}\mathrm{C}$ (package surface temperature) for 60 to 120 seconds.

Mounting condition of 260 $^{\circ}$ C within 10 seconds is recommended.

Flow soldering must be performed once.

· When using soldering Iron

Complete soldering within 10 seconds for lead temperature not exceeding 260 °C or within 3 seconds not exceeding 350 °C

Heating by soldering iron must be done only once per lead.

17.2. Precautions for General Storage

- · Avoid storage locations where devices may be exposed to moisture or direct sunlight.
- Follow the precautions printed on the packing label of the device for transportation and storage.
- Keep the storage location temperature and humidity within a range of 5 °C to 35 °C and 45 % to 75 %, respectively.
- Do not store the products in locations with poisonous gases (especially corrosive gases) or in dusty conditions.
- Store the products in locations with minimal temperature fluctuations. Rapid temperature changes during storage can cause condensation, resulting in lead oxidation or corrosion, which will deteriorate the solderability of the leads.
- · When restoring devices after removal from their packing, use anti-static containers.
- · Do not allow loads to be applied directly to devices while they are in storage.
- If devices have been stored for more than two years under normal storage conditions, it is recommended that you check the leads for ease of soldering prior to use.

18. Land Pattern Dimensions (for reference only)

Unit: mm

TLP240GA

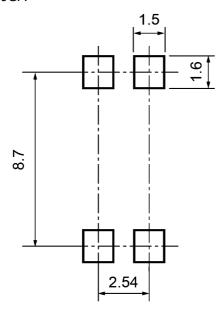


Fig. 18.1 Lead forming and taping option (LF1), (TP1), (LF5), (TP5)

TLP240GAF

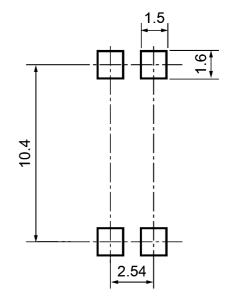


Fig. 18.2 Lead forming and taping option (LF4), (TP4)

19. EN 60747-5-5 Option (D4) Specification

· Part number: TLP240GA (Note 1)

• The following part naming conventions are used for the devices that have been qualified according to option (D4) of EN 60747.

Example: TLP240GA(D4TP1,F

D4: EN 60747 option TP1: Tape type

F: [[G]]/RoHS COMPATIBLE (Note 2)

Note 1: Use TOSHIBA standard type number for safety standard application.

e.g., TLP240GA(D4TP1,F \rightarrow TLP240GA

Note 2: Please contact your Toshiba sales representative for details on environmental information such as the product's RoHS compatibility.

RoHS is the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

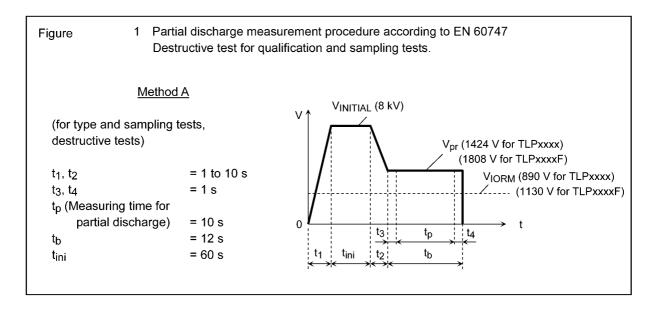
Description		Symbol	Rating	Unit	
Application classification					
for rated mains voltage \leq 300 Vrms for rated mains voltage \leq 600 Vrms		I-IV I-III	_		
Climatic classification			40 / 085 / 21	_	
Pollution degree			2	_	
	TLPxxxx type				
Maximum operating insulation voltage	TLPxxxxF type	VIORM	1130	Vpeak	
Input to output test voltage, Method A	TLPxxxx type	- V _{pr}	1424	Vessk	
V_{pr} = 1.6 × V_{IORM} , type and sample test t_p = 10 s, partial discharge < 5 pC	TLPxxxxF type		1808	Vpeak	
Input to output test voltage, Method B	TLPxxxx type		1670	- Vpeak	
V_{pr} = 1.875 × V_{IORM} , 100 % production test t_p = 1 s, partial discharge < 5 pC	TLPxxxxF type	- V _{pr}	2120		
Highest permissible overvoltage (transient overvoltage, t _{pr} = 60 s)		V _{TR}	8000	Vpeak	
Safety limiting values (max. permissible ratings in case also refer to thermal derating current (input current I _F , P _{SO} = 0) power (output or total power dissipation) temperature	I _{si} P _{so} T _s	400 700 150	mA mW °C		
Insulation resistance V_{IO} = 500 V, T_a = 25 °C V_{IO} = 500 V, T_a = 100 V V_{IO} = 500 V, V_{IO} = Ts		R _{si}	$ \begin{array}{c} $	Ω	

Fig. 19.1 EN 60747 Insulation Characteristics

Table Insulation Related Specifications (Note)

Insulation Related Parameters	Symbol	TLP240GA	TLP240GAF
Minimum creepage distance	Cr	7.0 mm	8.0 mm
Minimum clearance	CI	7.0 mm	8.0 mm
Minimum insulation thickness	ti	0.4 mm	0.4 mm
Comparative tracking index	CTI	175	175

Note: If a printed circuit is incorporated, the creepage distance and clearance may be reduced below this value. (e.g., at a standard distance between soldering eye centers of 7.5 mm). If this is not permissible, the user shall take suitable measures.


Note: This photocoupler is suitable for **safe electrical isolation** only within the safety limit data.

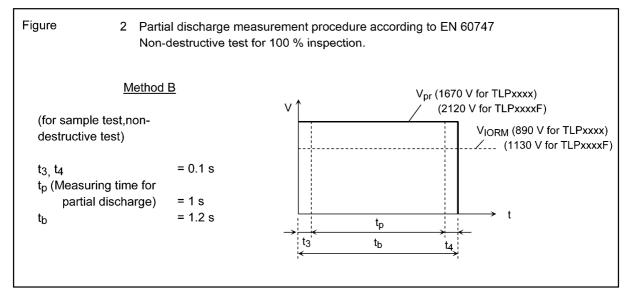

Maintenance of the safety data shall be ensured by means of protective circuits.

Fig. 19.2 Marking on Packing

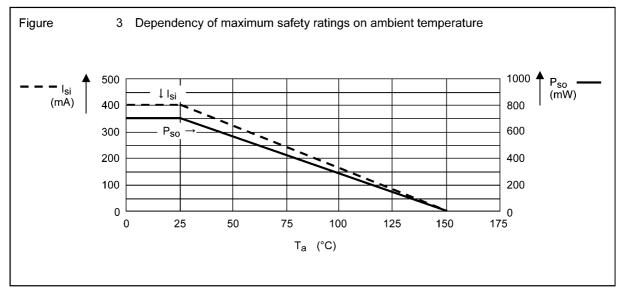


Fig. 19.3 Measurement Procedure

20. Ordering Information (Example of Item Name)

Item Name	Packaging (Note 1)	VDE Option	Packing (MOQ)
TLP240GA(F	TH		Magazine (100 pcs)
TLP240GA(LF1,F	LF1		Magazine (100 pcs)
TLP240GA(LF5,F	LF5		Magazine (100 pcs)
TLP240GA(TP1,F	LF1		Tape and reel (1500 pcs)
TLP240GA(TP5,F	LF5		Tape and reel (1500 pcs)
TLP240GA(D4,F	TH	EN 60747-5-5	Magazine (100 pcs)
TLP240GA(D4LF1,F	LF1	EN 60747-5-5	Magazine (100 pcs)
TLP240GA(D4LF5,F	LF5	EN 60747-5-5	Magazine (100 pcs)
TLP240GA(D4TP1,F	LF1	EN 60747-5-5	Tape and reel (1500 pcs)
TLP240GA(D4TP5,F	LF5	EN 60747-5-5	Tape and reel (1500 pcs)
TLP240GAF(F	TH, Wide forming		Magazine (100 pcs)
TLP240GAF(LF4,F	LF4, Wide forming		Magazine (100 pcs)
TLP240GAF(TP4,F	LF4, Wide forming		Tape and reel (1000 pcs)
TLP240GAF(D4,F	TH, Wide forming	EN 60747-5-5	Magazine (100 pcs)
TLP240GAF(D4LF4F	LF4, Wide forming	EN 60747-5-5	Magazine (100 pcs)
TLP240GAF(D4TP4F	LF4, Wide forming	EN 60747-5-5	Tape and reel (1000 pcs)

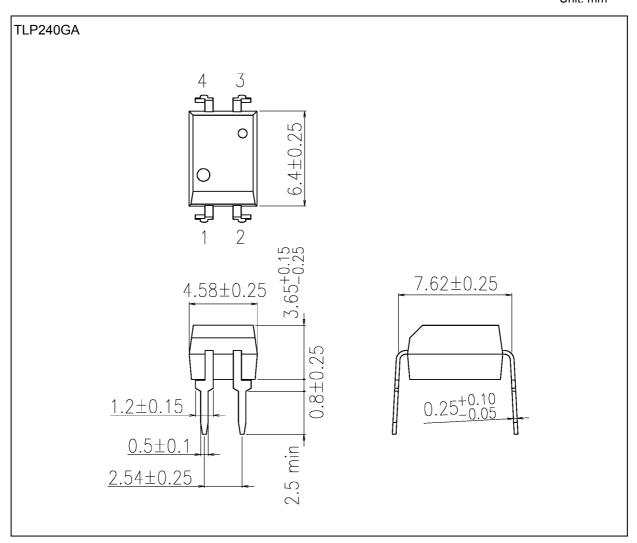
Note 1: TH: Through-hole, LF: Lead forming for surface mount

21. Devices in Halogen-Free Resin Packages

· This product is Halogen-Free

Toshiba Electronic Devices & Storage Corporation ("Toshiba") defines a "Halogen-Free resin semiconductor product" as a semiconductor product in which:

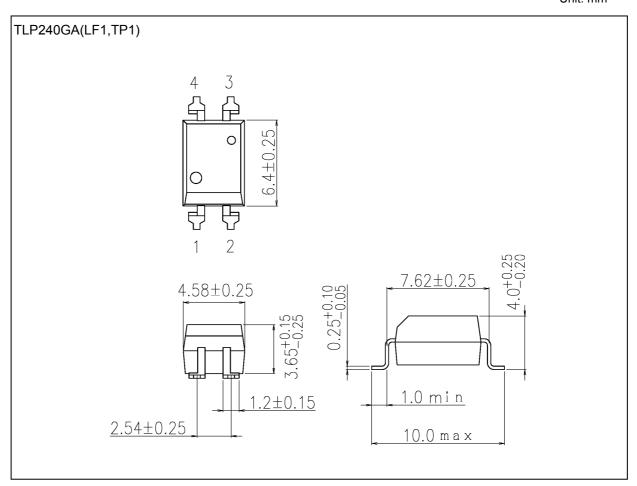
- (1) the encapsulating resins do not contain any of the following elements: bromine (Br), chlorine (Cl) and antimony (Sb), respectively, in an amount exceeding 0.09 weight percent, and do not contain chlorine and bromine in an aggregate amount exceeding 0.15 weight percent of the encapsulating resins, and/or
- (2) the resin portion(s) in printed circuit boards do not contain any of the following elements: bromine, chlorine and antimony, respectively, in an amount exceeding 0.09 weight percent, and do not contain chlorine and bromine in an aggregate amount exceeding 0.15 weight percent of the each resin portion(s) in printed circuit boards.


For avoidance of doubt, "Halogen-Free resin semiconductor product" does not mean, and Toshiba does not make any warranty of any kind, that said semiconductor product is entirely free of antimony or of any of the following elements of the halogen family: bromine, chlorine, iodine (I), fluorine (F) and astatine (At).

In addition, a Halogen-Free resin semiconductor product may contain antimony and/or any of the elements of the halogen family as mentioned in the above paragraph in one or more portion(s) of the semiconductor product other than the encapsulating resins and the resin portion(s) in printed circuit boards.

The information provided herein is accurate as of the date that it was provided, to the best of the knowledge and belief of the Toshiba Electronic Devices & Storage Corporation ("Toshiba"), Toshiba bases such knowledge and belief on information provided by third parties, and Toshiba makes no representation or warranty as to the accuracy of such third party information. Toshiba has taken and will continue to take, reasonable steps to provide accurate information to its customers, but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.

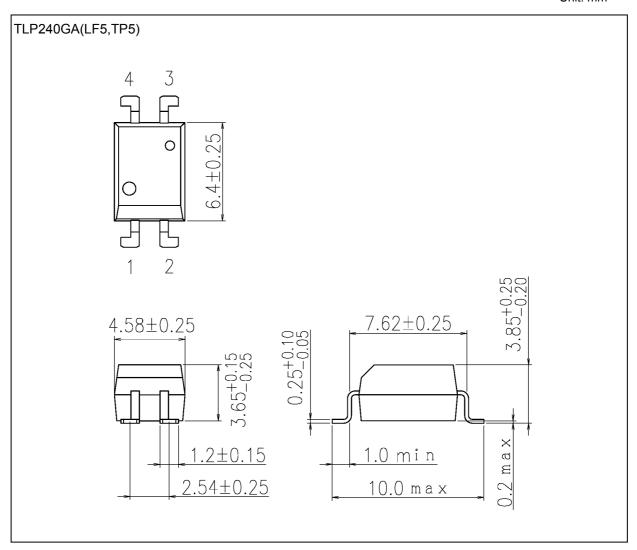
Unit: mm



Weight: 0.26 g (typ.)

	Package Name(s)
TOSHIBA: 11-5B2S	

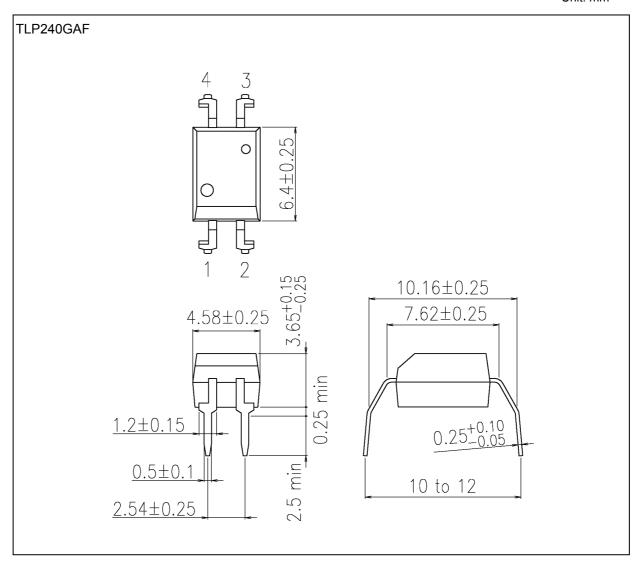
Unit: mm



Weight: 0.25 g (typ.)

	Package Name(s)
TOSHIBA: 11-5B201S	

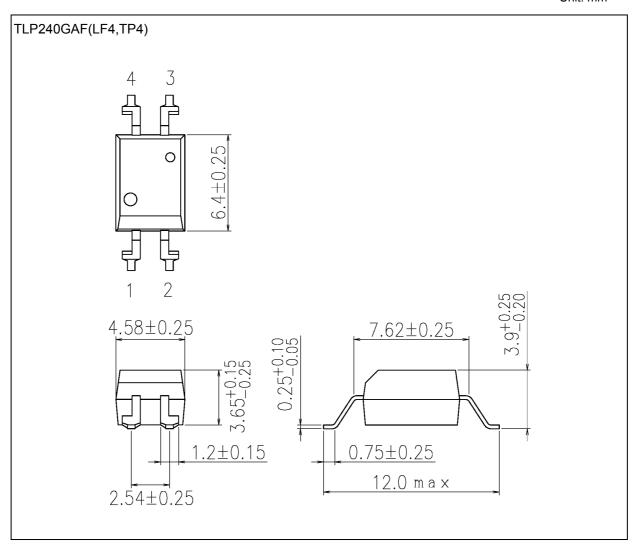
Unit: mm


Weight: 0.25 g (typ.)

	Package Name(s)
TOSHIBA: 11-5B205S	

Rev.8.0

Unit: mm


Weight: 0.26 g (typ.)

	Package Name(s)
TOSHIBA: 11-5B202S	

Rev.8.0

Unit: mm

Weight: 0.25 g (typ.)

	Package Name(s)
TOSHIBA: 11-5B204S	