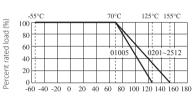


Feature

- Small size & light weight
- Save assembly cost.
- Suitable for both wave & re-flow soldering.
- Applications: Navigator, Mobile Phone, Telecom, PDA, Setbox, Meter.

Figures


I. High purity Alumina substrate
Protective coating
Resistance element
A. Termination (Inner) Ni / Cr
S. Termination (Between) Ni Barrier
G. Termination (Outer) Sn

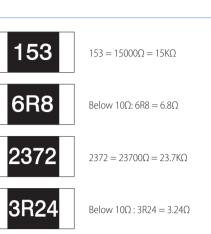
ο**ο**ο λλλ

ROYALOHM

Derating Curve & Specification

Ambient temperature (°C)

Туре	01005	0201	0402	0603	0805	1206	1210	1812	2010	2512
Size	0402	0603	1005	1608	2012	3216	3225	4532	5025	6432
Max. Working Voltage	15V	25V	50V	75V	150V	200V	200V	200V	200V	200V
Max. Overload Voltage	30V	50V	100V	150V	300V	400V	500V	500V	500V	500V
Dielectric withstanding Voltage	-	-	100V	300V	500V	500V	500V	500V	500V	500V
Operating Temperature	-55~+125°C	-55~+155℃	-55~+155°C	-55~+155°C	-55~+155°C	-55~+155°C	-55~+155℃	-55~+155°C	-55~+155°C	-55~+155°C


Туре		01005	0201	0402	0603	0805	1206	1210	1812	2010	2512
	L(mm)	0.40±0.02	0.60±0.03	1.00±0.10	1.60±0.10	2.00±0.15	3.10±0.15	3.10±0.10	4.50±0.20	5.00±0.10	6.35±0.10
	W(mm)	0.20±0.02	0.30±0.03	0.50±0.05	0.80±0.10	1.25 +0.15 -0.10	1.55 +0.15 -0.10	2.60±0.20	3.20±0.20	2.50±0.20	3.20±0.20
Dimension	H(mm)	0.13±0.02	0.23±0.03	0.35±0.05	0.45±0.10	0.55±0.10	0.55±0.10	0.55±0.10	0.55±0.20	0.55±0.10	0.55±0.10
	A(mm)	0.10±0.03	0.10±0.05	0.20±0.10	0.30±0.20	0.40±0.20	0.45±0.20	0.50±0.25	0.50±0.20	0.60±0.25	0.60±0.25
	B(mm)	0.10±0.03	0.15±0.05	0.25±0.10	0.30±0.20	0.40±0.20	0.45±0.20	0.50±0.20	0.50±0.20	0.50±0.20	0.50±0.20
Resistance Va	ue of Jumper					<50	lmΩ				
Rated Current	of Jumper	0.5A	0.5A	1A	1A	2A	2A	2A	2A	2A	2A
Max.Overload Cu	rrent of Jumper	1A	1A	2A	2A	5A	10A	10A	10A	10A	10A

Туре	01005	0201	0402	0603	08	05	12	06	1210	1812	2010	2512
Power Rating at 70°C	1/32W	1/20W	1/16W	1/10W	1/8W	1/4W	1/4W	1/3W	1/2W	3/4W	3/4W	1W
Resistance Range of 0.5%(E-96)	-	-	1Ω~10MΩ	1Ω~10MΩ	1Ω~10MΩ	-	1Ω~10MΩ	-	1Ω~10MΩ	1Ω~10MΩ	1Ω~10MΩ	1Ω~10ΜΩ
Resistance Range of 1%,2%(E-96)	10Ω ~ 10ΜΩ		Ω~ MΩ	0.01Ω~ 10MΩ	0.1Ω≤R <10MΩ	0.01Ω ≤R <0.1 Ω	0.1Ω≤R <10MΩ	0.01Ω≤R <0.1Ω		0.01Ωr	~10MΩ	
Resistance Range of 5%(E-24)		1Ω~10ΜΩ		0.01Ω~ 10MΩ	0.1Ω≤R <10MΩ	0.01Ω ≤R <0.1 Ω	0.1Ω≤R <10MΩ	0.01Ω≤R <0.1Ω		0.01Ω-	~10MΩ	

Marking on the Resistors Body

- For 01005, 0201, 0402 size, no marking on the body due to the small size of the resistor.
- ±5% tolerance product: the marking is 3 digits, the first 2 digits are the significant of the resistance and the 3rd digit denotes number of zeros following.
- 0805, 1206, 1210, 2010, 2512 ≤±1%: the marking is 4 digits, the first 3 digits are the significant of the resistance and the 4th digit denotes number of zeros following.
- Standard E-96 series values of 0603 ≤±1%: due to the small size of the resistor's body, 3 digits marking will be used to indicate the accurate resistance value by using the following Multiplier & Resistance Code.

Multiplier Code (for 0603 $\leq \pm 1\%$ marking)

Code	A	В	С	D	E	F	G	н	Х	Y	Z
Power	10 ⁰	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10-1	10 ⁻²	10-3

Standard E-96 series Resistance Value code (for 0603≤±1% marking)

Value	Code										
100	01	147	17	215	33	316	49	464	65	681	81
102	02	150	18	221	34	324	50	475	66	698	82
105	03	154	19	226	35	332	51	487	67	715	83
107	04	158	20	232	36	340	52	499	68	732	84
110	05	162	21	237	37	348	53	511	69	750	85
113	06	165	22	243	38	357	54	523	70	768	86
115	07	169	23	249	39	365	55	536	71	787	87
118	08	174	24	255	40	374	56	549	72	806	88
121	09	178	25	261	41	383	57	562	73	825	89
124	10	182	26	267	42	392	58	576	74	845	90
127	11	187	27	274	43	402	59	590	75	866	91
130	12	191	28	280	44	412	60	604	76	887	92
133	13	196	29	287	45	422	61	619	77	909	93
137	14	200	30	294	46	432	62	634	78	931	94
140	15	205	31	301	47	442	63	649	79	953	95
143	16	210	32	309	48	453	64	665	80	976	96

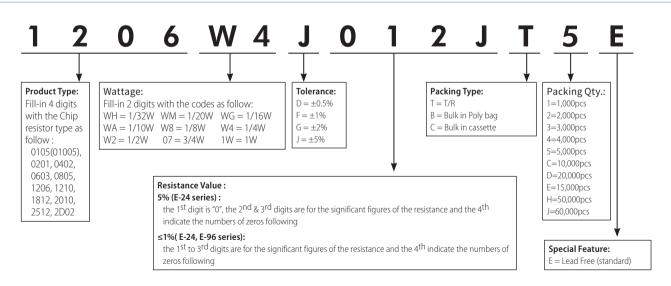
So the resistance value are marked as the following examples:

 $1.96 \text{K}\Omega = 196 \times 10^{1} \Omega = 29 \text{B}$

 $12.4\Omega = 124 \times 10^{-1} = 10X$

• Standard E-24 and not belong to E-96 series values ($\leq \pm 1\%$) of 0603 size: the marking is the same as 5% tolerance but marking as underline.

680 = 68Ω


Performance Specifications

Temperature coefficient	01005: 1Ω≤R<10Ω: -200~+600ppm/°C 10Ω≤R<100Ω: ±300ppm/°C 10Ω≤R<10MΩ: ±200ppm/°C 0201: 1Ω≤R≤10Ω: -100~+350ppm/°C >10Ω: ±200ppm/°C 0402: 1Ω≤R≤10Ω: ±200ppm/°C >10Ω: ±100ppm/°C	0603: 0.01Ω≤R≤0.03Ω:±1500PPM/°C 0.03Ω <r≤0.05ω:±1000 ppm="" °c<br="">0.05Ω<r<1ω:±800ppm °c<br="">1Ω≤R≤10Ω: ±200PPM/°C >10Ω:±100PPM/°C</r<1ω:±800ppm></r≤0.05ω:±1000>	0805, 1206, 1210, 1812, 2010, 2512: 0.01Ω ≤ R ≤0.015Ω: ±1500ppm/°C 0.015Ω < R ≤0.03Ω:±1000ppm/°C 0.03Ω < R <1Ω: ±800ppm/°C 1Ω≤R≤10Ω: ±200ppm/°C >10Ω: ±100ppm/°C
Short-time overload	$\pm 5\%, \pm 2\%; \pm (2.0\% + 0.05\Omega)$ $\pm 1\%, \pm 0.5\%; \pm (1.0\% + 0.05\Omega)$ 01005 $\pm 5\% \pm 1\%; \pm (2.0\% + 0.05\Omega)$		
Insulation resistance	≥ 1,000 MΩ		
Dielectric withstanding voltage	No evidence of flashover, mechanical dama	ge, arcing or insulation breakdown	
Terminal bending	±(1.0% + 0.05Ω)		
Soldering heat	±(1.0% + 0.05Ω)		
Solderability	Coverage must be over 95%.		
Rapid change of temperature	$\pm 5\%, \pm 2\%; \pm (1.0\% + 0.05\Omega)$ $\pm 1\%, \pm 0.5\%; \pm (0.5\% + 0.05\Omega)$ $01005 \pm 5\% \pm 1\%; \pm (1.0\% + 0.05\Omega)$		
Humidity (Steady State)	±5%, ± 2%: ±(3.0% + 0.05Ω) ±1%, ± 0.5%: ±(0.5% + 0.05Ω) 01005 ±5% ±1% (-55°C~125°C): ±(2.0% + 0.05	05Ω)	
Load life in humidity	$\pm 5\%, \pm 2\%; \pm (3.0\% + 0.05\Omega)$ $\pm 1\%, \pm 0.5\%; \pm (1\% + 0.05\Omega)$ $01005; \pm (3.0\% + 0.05\Omega)$		
Load life	±5%, ± 2%: ±(3.0% + 0.05Ω) ±1%, ± 0.5%: ±(1% + 0.05Ω) 01005: ±(3.0% + 0.05Ω)		

• Resistance value which doesn't belong to E-24 and E-96 Series Standard Values is available case by case.

Ordering Procedure (Example: 1206 1/4W 5% 1.2 $\Omega\,$ T/R-5000)

The standard Part No. includes 14 digits with the following explanation:

- 1. 1st~4th digits:
 - a) This is to indicate the SMD Resistor size. Example: 1206, TC05 or HV03;
 - b) For Resistor Network & Coated type, the 1st~3rd digits are to indicate the product type and the 4th digit is the special feature. Example: RNLA = Resistor Newtork Circuit A type; CFRF = Carbon Film Fixed Resistors Non-Flame type; MORI = Metal Oxide Film Fixed Resistor Non-Inductive type.
 - c) For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4th digit will be "0". Example: PRW0=PRW type; PRWC=PRWC type.
- 2. 5th~ 6th digits:
 - a) This is to indicate the wattage or power rating. To distinguish the sizes and the numbers, the following codes are used, and please refer to the following chart for details: W = Normal Size; S = Small Size; U = Ultra Small Size; "1" ~ "G" to denotes "1" ~ "16" as Hexadecimal:

Wattage	1/2	1/3	1/4	1/5	1/6	1/7	1/8	1/9	1/1	10 1	/11	1/12	1/13	1/14	1/15	1/16
Normal Size	W2	W3	W4	W5	W6	W7	W8		W	A	WB	WC	WD	WE	WF	WG
Small Size	S2	S3	S4	S5	S6	S7	S8		S/	4	SB	SC	SD	SE	SF	SG
Ultra Small Size	U2	U3	U4	U5	U6	U7	U8	U9	U,	Α	UB	UC	UD	UE	UF	UC
/~16W (≥1W)																
	1		2	1	5	6	7	Q	0	10	11	12	13	14	15	
Wattage	1	2	3	4	5	6 6W	7	8	9	10	11 BW	12 CW	13 	14 	15 	16
	1 	2 2W	3 3W	4 4W	5 5W	6 6W	7 7W	8 8W	9 9W	10 AW	11 BW	12 CW	13 DW	14 EW	15 FW	1¢ G\
Wattage	1 IW 15					-				-						

1/16W ~ 1/2W (<1W)

b) For power rating less than 1W, the 5th digit will be the letters W, S or U to represent the size required & the 6th digit will be a number or a letter code. Example: WA = 1/10W; U2 = 1/2W-SS

c) For power rating of 1W to 16W, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W, S or U. Example: AW = 10W; 3S = 3W-S.

- d) For power rating between 20W to 99W, the $5^{\text{th}} \& 6^{\text{th}}$ digits will show the whole numbers of the power rating itself. Example: 20 = 20W; 75 = 75W.
- e) For power rating of 100W & over, the 5th & 6th digits will be indicated with "00" and the actual wattage being indicated at the last 3 digits (12th~14th) of the Part No.

f) For special power ratings, the following codes are to be used:					
	f)	For special power	ratings the	following codes	are to be used.
	1)	I UI Special power	iauiiys, uie	TOTIONNING COURS	are to be used.

1). WH = 1/32W	(10P8 Chip Netwo	ork)	2). 07 = 3/4WS (C	hip 2010 size)
3). 04 = 0.4W-SS	(0.4 watt Ultra Sm	nall size)	4). 06 = 0.6W-S (0).6 watt Small size)
5). 2A = 2.5W	6). 6A = 6.5W	7). WK= 2/3W	8). 1A=1.5W	9). 1.25W =1Q

g) For Resistor Network, since the power rating is fixed as 1/8W for A circuit & 1/5W for B circuit, the 5th & 6th digit is to be used to denote the number of pins required. Example: 09 = 9pins; 12 = 12pins.

h) For Jumper Wires the $5^{th}\,\&\,6^{th}$ digits will be indicated with "00" .

i) For Thin Film Chip Resistors, these 2 digits will be used to indicated the requested Temperature coefficient:

 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. As for Metal Film Fixed Resistor products, it is also to denote the standard PPM as follows:

$\mathbf{B} = \pm 0.1\%$	(15PPM)	$G = \pm 2\%$ (1	IOOPPM)	$W = \pm 0.05\%$
$\mathbf{C} = \pm 0.25\%$	(25PPM)	$J = \pm 5\%$ (2)	200PPM)	$L = \pm 0.01\%$
$\mathbf{D} = \pm 0.5\%$	(50PPM)	$\mathbf{K} = \pm 10\%$		
$F = \pm 1\%$	(50PPM)			

Remark: if it is not one of the above standard "tolerance-TCR", the requirement should be clearly stated when placing order. Example: ±1% (25PPM), the 7th digit still shows "F" but separately note the requirement of "25PPM"

4. The 8th to 11th digits is to denote the Resistance Value:

- a) For the standard resistance values of E-24 series in 5% & 10% tolerance, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following
- b) For the standard resistance values of E-96 series in $\leq 2\%$ tolerance, the 8th digit to the 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following.
- c) For the code to the significant figures to E-24 & E-96 series, please refer to page 170 & 171 of the standards Resistance Value list.
- d) The following numbers and the letter codes is to be used to indicate the number of zeros in the 11th digit:

$0 = 10^{\circ}$	$1 = 10^{1}$	$2 = 10^{2}$	$3 = 10^{3}$	$4 = 10^{4}$	$5 = 10^{5}$	$6 = 10^{6}$
$J = 10^{-1}$	$K = 10^{-2}$	$L = 10^{-3}$	$M = 10^{-4}$	$N = 10^{-5}$	$P = 10^{-6}$	

e) For Cement Resistors the 8th digit will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor proudct. The 9th to 11th please refer to point 4.a

Example:

E-24 series	E-96 series	Cement Resistors
0120 = 12 ohm	1210 = 121 ohm	W120 = 12 ohm Wire-wound type
0123 = 12K ohm	1302 = 13K ohm	W12J = 1.2 ohm Wire-wound type
012J = 1.2 ohm	196J = 19.6 ohm	P273 = 27 kohm Powe Film type

5. The 12th, 13th & 14th digits:

Ν

a) The 12th digit is to denote the Packaging type with the following codes:

A = Tape / Box (Ammo Pack)	C = Bulk in Cassette (for Chip product)	
B = Bulk / Box	T = Tape / Reel	P = Tape / Box of PT-26 produc

b) The 13th digit is normally to indicate the Packing Quantity of Tape/Box or Tape/Reel packaging types. Except for Chip products Bulk packing, this digit should be filled "0" or other products with "Bulk/Box packaging requirement. The following letter codes is to be used for some packaging quantities.

A = 500 pcs	B = 2,500 pcs G = 25,000 pcs	C = 10,000pcs L = 45,000pcs	N = 12,500pcs H = 50,000pcs	E = 15,000pcs J = 60,000pcs
D = 20,000pcs	G = 23,000pcs	L = 45,000pcs	11 – 30,000 pcs	J = 00,000pcs
Example:				
<u>CHIP product</u>		Other products		
TD = T/R-20,000		A5 = T/B-5,000		
TE = T/R-15,000		TB = T/R-2,500		
T4 = T/R-4,000		BO = B/B		

c) For the Forming type products, the 13th & 14th digits are used to denote the forming types of the product with the following letter codes:

MF =	M type with Flattened lead wire	F0 = F type
MK =	M type with Kinked lead wire	F1 = F1 type
ML =	M type with normal lead wire	F2 = F2 type
MC =	M type with kinked lead wire	F3 = F3 type

d) For power rating over 100watt, the 12th to the 14th digits are to denote the actual wattage of the products:

Example: 100 = 100watt 150 = 150watt 225 = 225watt

e) For some products, the 14th digit alone can use to denote special features or additional information with the following codes:

P = Panasert type1 = Avisert 1 type2 = Avisert 2 type3 = Avisert 3 typeA = CO 1/4W - A typeB = CO 1/4W - B type

E = used to denote the "Environment Protection, lead Free type" of SMD category resistors (now, this became the Standard type of SMD)

f) For some products, the 14th digit alone can use to denote special features or additional information with the following codes:

B=1/32W C=1/16W F=1/10W G=1/8W H=1/6W J=1/4W K=1/3W M=1/2W N=3/4W P=1W S=Special