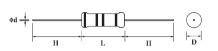
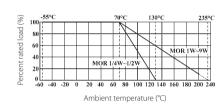
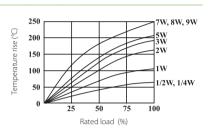


Metal Oxide Film Fixed Resistors

Feature


- Excellent flame retardant coating
- High stability even in bad environment
- High purity ceramic core
- Meet EIA-RC2655A requirements
- High safety standard




Dimension (mm)

Derating Curve

Heat Rise Chart

Specification

Part No.	Туре	Power Rating 70°C	Dimension (mm)					MAX.	MAX.	Dielectric	Resistance
			D	L	d ±0.05	H±3	PT	Working Voltage	Overlaod Voltage	Withstanding Voltage	Range
MOR0W4	MOR-25	1/4W	2.2±0.5	6.5±1.0	0.54	28	52	250V	400V	250V	0.1Ω~470ΚΩ
MOR0S2	MOR-50-S	1/2W-S	2.2±0.5	6.5±1.0	0.54	28	52	250V	400V	250V	0.1Ω~470ΚΩ
MOR0W2	MOR-50	1/2W	3.0±0.6	9.5±1.0	0.54	28	52	250V	400V	250V	0.1Ω~560ΚΩ
MOR01S	MOR-100-S	1W-S	3.5±0.6	9.5±1.0	0.54	28	52	350V	600V	350V	0.1Ω~560ΚΩ
MOR01W	MOR-100	1W	4.5±0.6	11.5±1.0	0.70	25	52	350V	600V	350V	0.1Ω~560ΚΩ
MOR02S	MOR-200-S	2W-S	4.5±0.6	11.5±1.0	0.70	25	52	350V	600V	350V	0.1Ω~560ΚΩ
MOR02W	MOR-200	2W	5.0±0.6	15.5±1.0	0.70	28	64	350V	600V	350V	0.1Ω~560ΚΩ
MOR03S	MOR-300-S	3W-S	5.0±0.6	15.5±1.0	0.70	28	64	350V	600V	350V	0.1Ω~560ΚΩ
MOR03W	MOR-300	3W	6.0±0.6	17.5±1.0	0.75	28	64	500V	800V	500V	0.1Ω~560ΚΩ
MOR05S	MOR-500-S	5W-S	6.0±0.6	17.5±1.0	0.75	28	64	500V	800V	500V	0.1Ω~560ΚΩ
MOR05W	MOR-500	5W	8.0±0.6	24.5±1.0	0.75	38	90	750V	1000V	750V	0.1Ω~680ΚΩ
MOR07W	MOR-700	7W	8.0±0.6	29.5±1.0	0.75	38	B/B	750V	1000V	750V	20Ω~150ΚΩ
MOR08W	MOR-800	8W	8.0±0.6	39.5±1.0	0.75	38	B/B	750V	1000V	750V	30Ω~200ΚΩ
MOR09W	MOR-900	9W	8.0±0.6	52.5±1.0	0.75	38	B/B	750V	1000V	750V	50Ω~200ΚΩ

- Standard E-24 Series ±5% tolerance
- Standard Gray base color for Normal Size product, Blue color for Small Size product
- Standard Non-Flammable coating
- Non-Inductive type available case by case

Metal Oxide Film Fixed Resistors

Performance Specification

1/4W, 1/2WS: ≤100K Ω: ±350PPM/°C;

100KΩ<R≤470KΩ: 0~-700PPM/°C

1/2W, 1WS: ≤120K Ω: ±350PPM/°C;

120KΩ<R≤560KΩ: 0~-700PPM/°C

Temperature coefficient 1W, 2W, 2WS, 3W, 3WS, 5WS: ≤150K Ω: \pm 350PPM/°C;

150KΩ<R≤560KΩ: 0~-700PPM/°C

5W: ≤180K Ω: ±350PPM/°C;

180KΩ<R≤680KΩ: 0~-700PPM/°C

7W, 8W, 9W: ±350PPM/°C

Short-time Overload Normal size, $\Delta R/R \le \pm (1\% + 0.05 \Omega)$, with no evidence of mechanical damage

Small size, $\Delta R/R \leq \pm (2\% + 0.05~\Omega),$ with no evidence of mechanical damage

Dielectric withstanding voltage No evidence of flashover, mechanical damage, arcing or insulation breakdown

Pulse Overload Normal size, $\Delta R/R \le \pm (2\% + 0.05 \Omega)$, with no evidence of mechanical damage

Small size, $\Delta R/R \le \pm (5\% + 0.05 \Omega)$, with no evidence of mechanical damage

Terminal strength No evidence of mechanical damage

Soldering heat $\Delta R/R \le \pm (1\% + 0.05 \Omega)$, with no evidence of mechanical damage

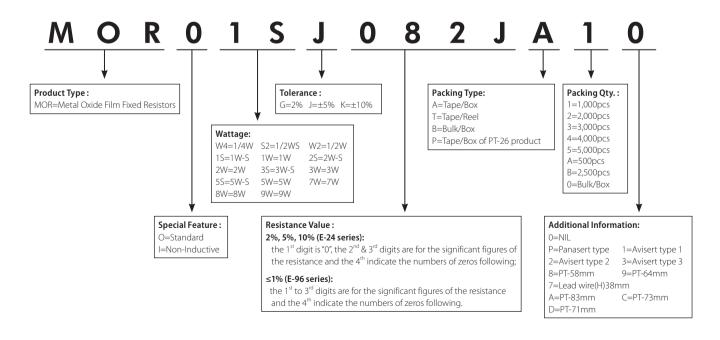
Solderability Coverage must be over 95%.

Resistance to solvent No deterioration of protective coating and markings

Rapid change of temperature $\Delta R/R \le \pm (2\% + 0.05 \Omega)$

with no evidence of mechanical damage

Humidity (Steady State) $\Delta R/R \le \pm (2\% + 0.05 \Omega)$


with no evidence of mechanical damage

Load life $<100k\Omega: \pm (5\%+0.05\Omega)$

 $\geq 100 \text{k}\Omega$: $\pm (10\% + 0.05\Omega)$

Flame retardant Resistor insulation is self-extinguishing within 10 seconds after externally applied flame is removed

Ordering Procedure (Example: MOR 1W-S 5% 8.2Ω T/B-1000)

Part No. System

1 2 3 4 5 6 7 8 9 10 11 12 13 14

The standard Part No. includes 14 digits with the following explanation:

- 1. 1st~4th digits:
 - a) This is to indicate the SMD Resistor size. Example: 1206, TC05 or HV03;
 - b) For Resistor Network & Coated type, the 1st~3rd digits are to indicate the product type and the 4th digit is the special feature. Example: RNLA = Resistor Newtork Circuit A type; CFRF = Carbon Film Fixed Resistors Non-Flame type; MORI = Metal Oxide Film Fixed Resistor Non-Inductive type.
 - c) For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4th digit will be "0". Example: PRW0=PRW type; PRWC=PRWC type.
- 2. $5^{th} \sim 6^{th}$ digits:
 - a) This is to indicate the wattage or power rating. To distinguish the sizes and the numbers, the following codes are used, and please refer to the following chart for details: W = Normal Size; S = Small Size; U = Ultra Small Size; "1" ~ "G" to denotes "1" ~ "16" as Hexadecimal:

1/16W ~ 1/2W (<1W)

Wattage	1/2	1/3	1/4	1/5	1/6	1/7	1/8	1/9	1/10	1/11	1/12	1/13	1/14	1/15	1/16
Normal Size	W2	W3	W4	W5	W6	W7	W8	W9	WA	WB	WC	WD	WE	WF	WG
Small Size	S2	S3	S4	S5	S6	S7	S8	S9	SA	SB	SC	SD	SE	SF	SG
Ultra Small Size	U2	U3	U4	U5	U6	U7	U8	U9	UA	UB	UC	UD	UE	UF	UG

1W ~ 16W (≥1W)

Wattage	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Normal Size	IW	2W	3W	4W	5W	6W	7W	8W	9W	AW	BW	CW	DW	EW	FW	GW
Small Size	15	2S	3S	45	5S	6S	7S	8S	95	AS	BS	CS	DS	ES	FS	GS
Ultra Small Size	1U	2U	3U	4U	5U	6U	7U	8U	9U	AU	BU	CU	DU	EU	FU	GU

- b) For power rating less than 1W, the 5th digit will be the letters W, S or U to represent the size required & the 6th digit will be a number or a letter code. Example: WA = $1/10W \cdot 1/2 = 1/2W \cdot S$
- c) For power rating of 1W to 16W, the 5^{th} digit will be a number or a letter code and the 6^{th} digit will be the letters of W, S or U. Example: AW = 10W; 3S = 3W-S.
- d) For power rating between 20W to 99W, the 5^{th} & 6^{th} digits will show the whole numbers of the power rating itself. Example: 20 = 20W; 75 = 75W.
- e) For power rating of 100W & over, the 5^{th} & 6^{th} digits will be indicated with "00" and the actual wattage being indicated at the last 3 digits ($12^{th} \sim 14^{th}$) of the Part No.
- f) For special power ratings, the following codes are to be used:

1). WH = 1/32W (10P8 Chip Network)

2). 07 = 3/4WS (Chip 2010 size)

3). 04 = 0.4W-SS (0.4 watt Ultra Small size)

4). 06 = 0.6W-S (0.6 watt Small size)

5). 2A = 2.5W 6). 6A = 6.5W 7). WK= 2/3W

8). 1A =1.5W 9). 1.25W =1Q

- g) For Resistor Network, since the power rating is fixed as 1/8W for A circuit & 1/5W for B circuit, the 5^{th} & 6^{th} digit is to be used to denote the number of pins required. Example: 09 = 9 pins; 12 = 12 pins.
- h) For Jumper Wires the 5^{th} & 6^{th} digits will be indicated with "00" .
- i) For Thin Film Chip Resistors, these 2 digits will be used to indicated the requested Temperature coefficient:

1). 05 = 5PPM

2). 10 = 10PPM

3). 15 = 15PPM

4). 25 = 25PPM

5). 50 = 50PPM

3. The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resisance Tolerance. As for Metal Film Fixed Resistor products, it is also to denote the standard PPM as follows:

 $\mathbf{B} = \pm 0.1\%$ (15PPM)

 $G = \pm 2\%$ (100PPM)

 $W = \pm 0.05\%$

 $C = \pm 0.25\%$ (25PPM)

 $J = \pm 5\%$ (200PPM)

 $L = \pm 0.01\%$

 $\mathbf{D} = \pm 0.5\%$ (50PPM)

 $K = \pm 10\%$

 $\mathbf{F} = \pm 1\%$ (50PPM)

- 4. The 8th to 11th digits is to denote the Resistance Value:
 - a) For the standard resistance values of E-24 series in 5% & 10% tolerance, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following
 - b) For the standard resistance values of E-96 series in \leq 2% tolerance, the 8th digit to the 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following.
 - c) For the code to the significant figures to E-24 & E-96 series, please refer to page 170 & 171 of the standards Resistance Value list.
 - d) The following numbers and the letter codes is to be used to indicate the number of zeros in the 11th digit:

 $0 = 10^{0}$ $1 = 10^{1}$ $2 = 10^{2}$ $3 = 10^{3}$ $4 = 10^{4}$ $5 = 10^{5}$ $6 = 10^{6}$ $J = 10^{-1}$ $K = 10^{-2}$ $L = 10^{-3}$ $M = 10^{-4}$ $N = 10^{-5}$ $P = 10^{-6}$

e) For Cement Resistors the 8th digit will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor proudct. The 9th to 11th please refer to point 4.a Example:

E-24 series	E-96 series	Cement Resistors
0120 = 12 ohm	1210 = 121 ohm	W120 = 12 ohm Wire-wound type
0123 = 12K ohm	1302 = 13K ohm	W12J = 1.2 ohm Wire-wound type
012J = 1.2 ohm	196J = 19.6 ohm	P273 = 27 kohm Powe Film type

- 5. The 12th, 13th & 14th digits:
 - a) The 12th digit is to denote the Packaging type with the following codes:

 $A = Tape / Box (Ammo Pack) \qquad C = Bulk in Cassette (for Chip product)$ $B = Bulk / Box \qquad T = Tape / Reel \qquad P = Tape / Box of PT-26 product$

b) The 13th digit is normally to indicate the Packing Quantity of Tape/Box or Tape/Reel packaging types. Except for Chip products Bulk packing, this digit should be filled "0" or other products with "Bulk/Box packaging requirement. The following letter codes is to be used for some packaging quantities.

A = 500pcs B = 2,500pcs C = 10,000pcs N = 12,500pcs E = 15,000pcs D = 20,000pcs C = 25,000pcs D = 25,000pcs

Example:

CHIP product
Other products

TD = T/R-20,000 A5 = T/B-5,000

TE = T/R-15,000 TB = T/R-2,500

TA = T/R-4,000 TA = T/R-4,000

c) For the Forming type products, the 13th & 14th digits are used to denote the forming types of the product with the following letter codes:

 $\begin{array}{lll} \text{MF} = & \text{M type with Flattened lead wire} & \text{F0} = \text{F type} \\ \text{MK} = & \text{M type with Kinked lead wire} & \text{F1} = \text{F1 type} \\ \text{ML} = & \text{M type with normal lead wire} & \text{F2} = \text{F2 type} \\ \text{MC} = & \text{M type with kinked lead wire} & \text{F3} = \text{F3 type} \\ \end{array}$

d) For power rating over 100 watt, the 12^{th} to the 14^{th} digits are to denote the actual wattage of the products:

Example: 100 = 100watt 150 = 150watt 225 = 225watt

e) For some products, the 14th digit alone can use to denote special features or additional information with the following codes:

 $P = Panasert type \qquad 1 = Avisert 1 type \qquad 2 = Avisert 2 type \\ 3 = Avisert 3 type \qquad A = CO 1/4W - A type \qquad B = CO 1/4W - B type$

E = used to denote the "Environment Protection, lead Free type" of SMD category resistors (now, this became the Standard type of SMD)

f) For some products, the 14th digit alone can use to denote special features or additional information with the following codes:

 $B=1/32W \quad C=1/16W \quad F=1/10W \quad G=1/8W \quad H=1/6W \quad J=1/4W \quad K=1/3W \quad M=1/2W$

N=3/4W P=1W S=Special