Feature

- EIA standard color.
- Flame Retardant type available
- Low noise \& voltage coefficient
- Low temperature coefficient range
- Multiple epoxy coating on vacuum-deposited metal film provideds superior moisture protection
- Nichrome resistive element provides stable performance in various environments

Dimension (mm)

Derating Curve

Specification

Part No	Type	Power Rating $70^{\circ} \mathrm{C}$	Dimension (mm)					MAX. Working Voltage	MAX. Overlaod Voltage	Dielectric Withstanding Voltage
			D	L	$\mathrm{d} \pm 0.05$	$\mathrm{H} \pm 3$	PT			
MF0W8	MF-12	1/8W	1.9 ± 0.3	3.3 ± 0.3	0.45	28	52	200V	400V	400 V
MFOS4	MF-25-S	1/4W-S	1.9 ± 0.3	3.3 ± 0.3	0.45	28	52			
MF004	MF-40-SS	0.4W-SS	1.9 ± 0.5	3.3 ± 0.3	0.45	28	52	200 V	400 V	400 V
MFOW4	MF-25	1/4W	2.2 ± 0.3	6.5 ± 1.0	0.54	28	52	250 V	500 V	500 V
MFOS2	MF-50-S	1/2W-S	2.2 ± 0.5	6.5 ± 1.0	0.54	28	52	250 V	500 V	250 V
MFOW2	MF-50	1/2W	3.0 ± 0.6	9.5 ± 1.0	0.54	28	52	350 V	700 V	700 V
MF006	MF-60-S	0.6W-S	2.2 ± 0.5	6.5 ± 1.0	0.54	28	52	250 V	500 V	500 V
MF01S	MF-100-S	1W-S	3.0 ± 0.6	9.5 ± 1.0	0.54	28	52	350 V	700 V	700 V
MF01W	MF-100	1W	4.5 ± 0.6	11.5 ± 1.0	0.70	25	52	500 V	1000 V	1000 V
MF02S	MF-200-S	2W-S	4.5 ± 0.6	11.5 ± 1.0	0.70	25	52	500 V	1000 V	1000 V
MF02W	MF-200	2W	5.0 ± 0.6	15.5 ± 1.0	0.70	28	64	500 V	1000 V	1000 V
MF03S	MF-300-S	3W-S	5.0 ± 0.6	15.5 ± 1.0	0.70	28	64	500 V	1000 V	1000 V
MF03W	MF-300	3W	6.0 ± 0.6	17.5 ± 1.0	0.75	28	64	500 V	1000V	1000 V
Part No	Type		Standard Order					Special Order		
			Tolerance		esistance Ran		TCR	Tolerance	Resistance Range	TCR
MFOW8	MFOW8		$\pm 1 \%$	10 $2 \sim 1 \mathrm{M} \Omega$			± 50	$\pm 0.25 \%$	$51.1 \Omega \sim 200 \mathrm{~K} \Omega$	± 15
MFOS4	MFOS4		$\pm 2 \%$		$10 \Omega \sim 1 \mathrm{M} \Omega$		± 100	$\pm 0.5 \%$	$51.1 \Omega \sim 511 \mathrm{~K} \Omega$	± 25
MF004	MF004		$\pm 5 \%$		$1 \Omega \sim 1 \mathrm{M} \Omega$		± 200	$\pm 0.5 \%$	$51.1 \Omega \sim 511 \mathrm{~K} \Omega$	± 50
MFOW4	MF-25		$\pm 1 \%$		$10 \Omega \sim 1 \mathrm{M} \Omega$		± 50	$\pm 0.1 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 15
MFOS2	MF-50-S		$\pm 2 \%$		$1 \Omega \sim 1 \mathrm{M} \Omega$		± 100	$\pm 0.25 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 25
MF006	MF-60-S		$\pm 5 \%$		$1 \Omega \sim 1 \mathrm{M} \Omega$		± 200	$\pm 0.5 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 50
MFOW2 MF01S	$\begin{gathered} \text { MF-50 } \\ \text { MF-100-S } \end{gathered}$		$\pm 1 \%$		$10 \Omega \sim 1 \mathrm{M} \Omega$		± 50	$\pm 0.1 \%$	100 $2 \sim 330 \mathrm{~K} \Omega$	± 15
			$\pm 2 \%$		$10 \Omega \sim 1 \mathrm{M} \Omega$		± 100	$\pm 0.25 \%$	$51.1 \Omega \sim 511 \mathrm{~K} \Omega$	± 25
			$\pm 5 \%$		$1 \Omega \sim 1 \mathrm{M} \Omega$		± 200	$\pm 0.5 \%$	$10 \Omega \sim 1 \mathrm{M} \Omega$	± 50
MF01W	MF-100		$\pm 1 \%$		$51.1 \Omega \sim 1 \mathrm{M} \Omega$		± 50	$\pm 0.1 \%$	100 $2 \sim 330 \mathrm{~K} \Omega$	± 15
MFO2S MF02W	MF-200-SMF-200		$\pm 2 \%$		$51.1 \Omega \sim 1 \mathrm{M} \Omega$		± 100	$\pm 0.25 \%$	$51.1 \Omega \sim 511 \mathrm{~K} \Omega$	± 25
MF03S MF03W	$\begin{aligned} & \text { MF-300-S } \\ & \text { MF-300 } \end{aligned}$		$\pm 5 \%$		$1 \Omega \sim 1 \mathrm{M} \Omega$		± 200	$\pm 0.5 \%$	$51.1 \Omega \sim 1 \mathrm{M} \Omega$	± 50

Performance Specification

Short-time Overload	$\Delta R / R \leq \pm(0.5 \%+0.05 \Omega)$, with no evidence of mechanical damage
Dielectric withstanding voltage	With no evidence of flashover, mechanical damage,arcing or insulation breakdown
Pulse Overload	$\Delta R / R \leq \pm(1 \%+0.05)$, with no evidence of mechanical damage
Terminal strength	No evidence of mechanical damage
Soldering heat	$\Delta R / R \leq \pm(1 \%+0.05 \Omega)$ with no evidence of mechanical damage
Solderability	Coverage must be over 95\%.
Resistance to solvent	No deterioration of protective coating and markings
Rapid change of temperature	$\Delta R / R \leq \pm(1 \%+0.05 \Omega) \quad$ with no evidence of mechanical damage
Load life in humidity	Normal type: $\Delta R / R \leq \pm 1.5 \%$ \& Flame retardant type: $\Delta R / R \leq \pm 5 \%$
Load life	Normal type: $\Delta R / R \leq \pm 1.5 \%$ \& Flame retardant type: $\Delta R / R \leq \pm 5 \%$

Ordering Procedure (Example: MF 1/8W 1\% 47.5K T/R-5000)

New/OId Part.no Contrast

New Part.no	Old Part.no
MFOW8FF****A*0	MFROW8F****A*0
MFOS4FF****A*0	MFROS $4 F$ F**** $A^{*} 0$
MF004FF****A*0	MFR004F****A*0
MF0W4FF****A*0	MFROW 45 F***A*0
MFOS2FF******	MFROS $2 F$ ***** ${ }^{*} 0$
MFOW2FF****A*0	MFROW 2 F**** ${ }^{*} 0$
MF006FF****A*0	MFR006F****A*0

New Part.no	Old Part.no
MF01SFF****A*0	MFR01SF******0
MF01WFF****A*0	MFRO1WF****A*0
MF02SFF****A*0	MFR02SF****A*0
MF02WFF****A*	MFR02WF**** ${ }^{*} 0$
MF03SFF****A*0	MFR03SF****A*0
MF03WFF****A*0	MFR03WF****A*0

[^0]

The standard Part No. includes 14 digits with the following explanation:

1. $1^{\mathrm{st}} \sim 4$ th digits:
a) This is to indicate the SMD Resistor size. Example: 1206, TC05 or HV03;
b) For Resistor Network \& Coated type, the $1^{\text {st }}$ ~3rd digits are to indicate the product type and the $4^{\text {th }}$ digit is the special feature. Example: RNLA $=$ Resistor Newtork Circuit A type; CFRF = Carbon Film Fixed Resistors Non-Flame type; MORI = Metal Oxide Film Fixed Resistor Non-Inductive type.
c) For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4 th digit will be " 0 ". Example: PRW0=PRW type; PRWC=PRWC type.
2. $5^{\text {th }} \sim 6^{\text {th }}$ digits:
a) This is to indicate the wattage or power rating. To distinguish the sizes and the numbers, the following codes are used, and please refer to the following chart for details: $W=$ Normal Size; $S=$ Small Size; $U=$ Ultra Small Size; " 1 " \sim " G " to denotes " 1 " \sim " 16 " as Hexadecimal:

1/16W ~ 1/2W (<1W)

Wattage	1/2	1/3	1/4	1/5	1/6	1/7	1/8	1/9	1/10	1/11	1/12	1/13	1/14	1/15	1/16
Normal Size	W2	W3	W4	W5	W6	W7	W8	W9	WA	WB	WC	WD	WE	WF	WG
Small Size	S2	S3	S4	S5	S6	S7	S8	59	SA	SB	SC	SD	SE	SF	SG
Ultra Small Size	U2	U3	U4	U5	U6	U7	U8	U9	UA	UB	UC	UD	UE	UF	UG

$1 W \sim 16 W(\geq 1 W)$

Wattage	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Normal Size	IW	2W	3W	4W	5W	6W	7W	8W	9W	AW	BW	CW	DW	EW	FW	GW
Small Size	15	25	35	4 S	55	6 S	75	85	95	AS	BS	CS	DS	ES	FS	GS
Ultra Small Size	1 U	2 U	$3 U$	4 U	5 U	6 U	7 U	8 U	9 U	AU	BU	CU	DU	EU	FU	GU

b) For power rating less than 1 W , the $5^{\text {th }}$ digit will be the letters W, S or U to represent the size required \& the $6^{\text {th }}$ digit will be a number or a letter code. Example: WA $=1 / 10 \mathrm{~W} ; \mathrm{U} 2=1 / 2 \mathrm{~W}-\mathrm{SS}$
c) For power rating of 1 W to 16 W , the $5^{\text {th }}$ digit will be a number or a letter code and the $6^{\text {th }}$ digit will be the letters of W , S or U . Example: $\mathrm{AW}=10 \mathrm{~W} ; 3 \mathrm{~S}=3 \mathrm{~W}-\mathrm{S}$.
d) For power rating between 20 W to 99 W , the $5^{\text {th }} \& 6^{\text {th }}$ digits will show the whole numbers of the power rating itself. Example: $20=20 \mathrm{~W} ; 75=75 \mathrm{~W}$.
e) For power rating of 100 W \& over, the $5^{\text {th }} \& 6^{\text {th }}$ digits will be indicated with " 00 " and the actual wattage being indicated at the last 3 digits ($12^{\text {th }} \sim 14^{\text {th }}$) of the Part No.
f) For special power ratings, the following codes are to be used:
1). $W H=1 / 32 W$ (10P8 Chip Network)
2). $07=3 / 4 \mathrm{WS}$ (Chip 2010 size)
3). $04=0.4 \mathrm{~W}-$ SS (0.4 watt Ultra Small size)
4). $06=0.6 \mathrm{~W}-\mathrm{S}$ (0.6 watt Small size)
5). $2 \mathrm{~A}=2.5 \mathrm{~W}$
6). $6 \mathrm{~A}=6.5 \mathrm{~W}$
7). $W K=2 / 3 W$
8). $1 \mathrm{~A}=1.5 \mathrm{~W} \quad 9$). $1.25 \mathrm{~W}=1 \mathrm{Q}$
g) For Resistor Network, since the power rating is fixed as $1 / 8 \mathrm{~W}$ for A circuit \& $1 / 5 \mathrm{~W}$ for B circuit, the $5^{\text {th }} \& 6^{\text {th }}$ digit is to be used to denote the number of pins required. Example: $09=9$ pins; $12=12$ pins.
h) For Jumper Wires the $5^{\text {th }} \& 6^{\text {th }}$ digits will be indicated with " 00 "
i) For Thin Film Chip Resistors, these 2 digits will be used to indicated the requested Temperature coefficient:
1). $05=5$ PPM
2). $10=10 \mathrm{PPM}$
3). $15=15 \mathrm{PPM}$
4). $25=25$ PPM
5). $50=50 \mathrm{PPM}$
3. The $7^{\text {th }}$ digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resisance Tolerance. As for Metal Film Fixed Resistor products, it is also to denote the standard PPM as follows:
$\mathbf{B}= \pm 0.1 \% \quad$ (15PPM)
$\mathbf{G}= \pm 2 \% \quad$ (100PPM)
$\mathbf{W}= \pm 0.05 \%$
$\mathbf{C}= \pm 0.25 \% \quad$ (25PPM)
$J= \pm 5 \% \quad$ (200PPM)
$\mathbf{L}= \pm 0.01 \%$
$\mathbf{D}= \pm 0.5 \% \quad$ (50PPM)
$\mathbf{K}= \pm 10 \%$
4. The $8^{\text {th }}$ to $11^{\text {th }}$ digits is to denote the Resistance Value:
a) For the standard resistance values of E-24 series in 5% \& 10% tolerance, the 8 th digit is " 0 ", the 9 th \& $10^{\text {th }}$ digits are to denote the significant figures of the resistance and the $11^{\text {th }}$ digit is the number of zeros following
b) For the standard resistance values of E-96 series in $\leq 2 \%$ tolerance, the 8 th digit to the $10^{\text {th }}$ digits are to denote the significant figures of the resistance and the $11^{\text {th }}$ digit is the number of zeros following.
c) For the code to the significant figures to E-24 \& E-96 series, please refer to page 170 \& 171 of the standards Resistance Value list.
d) The following numbers and the letter codes is to be used to indicate the number of zeros in the $11^{\text {th }}$ digit:

$0=10^{0}$	$1=10^{1}$	$2=10^{2}$	$3=10^{3}$	$4=10^{4}$	$5=10^{5}$
$J=10^{-1}$	$K=10^{-2}$	$L=10^{-3}$	$M=10^{-4}$	$N=10^{-5}$	$P=10^{-6}$

e) For Cement Resistors the $8^{\text {th }}$ digit will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor proudct. The 9 th $_{\text {to }}$ 11th please refer to point $4 . a$
Example:

E-24 series	E-96 series
0120 = 12 ohm	1210 = 121 ohm
$0123=12 \mathrm{Kohm}$	$1302=13 \mathrm{Kohm}$
$012 \mathrm{~J}=1.2 \mathrm{ohm}$	196J $=19.6 \mathrm{ohm}$

Cement Resistors
W120 = 12 ohm Wire-wound type
W12J $=1.2$ ohm Wire-wound type
P273 $=27$ kohm Powe Film type
5. The $12^{\text {th }}, 13^{\text {th }} \& 14^{\text {th }}$ digits:
a) The $12^{\text {th }}$ digit is to denote the Packaging type with the following codes:

$$
\begin{array}{lll}
\text { A = Tape } / \text { Box (Ammo Pack) } & \text { C = Bulk in Cassette (for Chip product) } & \\
\text { B = Bulk } / \text { Box } & \text { T }=\text { Tape } / \text { Reel } & \text { P = Tape / Box of PT-26 product }
\end{array}
$$

b) The 13th digit is normally to indicate the Packing Quantity of Tape/Box or Tape/Reel packaging types. Except for Chip products Bulk packing, this digit should be filled "0" or other products with "Bulk/Box packaging requirement. The following letter codes is to be used for some packaging quantities.
$A=500 \mathrm{pcs}$
$B=2,500 \mathrm{pcs}$
$C=10,000$ pcs
$N=12,500 \mathrm{pcs}$
$E=15,000$ pcs
$D=20,000 \mathrm{pcs}$
$G=25,000$ pcs $\quad L=45,000$ pcs
$H=50,000$ pcs
$J=60,000 \mathrm{pcs}$

Example:

CHIP product	Other products
$T D=T / R-20,000$	$A 5=T / B-5,000$
$T E=T / R-15,000$	$T B=T / R-2,500$
$T 4=T / R-4,000$	$B 0=B / B$

c) For the Forming type products, the $13^{\text {th }}$ \& $14^{\text {th }}$ digits are used to denote the forming types of the product with the following letter codes:

$M F=M$ type with Flattened lead wire	$F 0=F$ type
$M K=M$ type with Kinked lead wire	$F 1=F 1$ type
$M L=M$ type with normal lead wire	$F 2=F 2$ type
$M C=M$ type with kinked lead wire	$F 3=F 3$ type

d) For power rating over 100 watt, the $12^{\text {th }}$ to the $14^{\text {th }}$ digits are to denote the actual wattage of the products: Example: $100=100$ watt $\quad 150=150$ watt $\quad 225=225$ watt
e) For some products, the $14^{\text {th }}$ digit alone can use to denote special features or additional information with the following codes:

$P=$ Panasert type	$1=$ Avisert 1 type	$2=$ Avisert 2 type
$3=$ Avisert 3 type	$A=C O 1 / 4 W-$ A type	$B=C O 1 / 4 W-B$ type

$E=$ used to denote the "Environment Protection, lead Free type" of SMD category resistors (now, this became the Standard type of SMD)
f) For some products, the 14th digit alone can use to denote special features or additional information with the following codes:

$\mathrm{B}=1 / 32 \mathrm{~W}$	$\mathrm{C}=1 / 16 \mathrm{~W}$	$\mathrm{~F}=1 / 10 \mathrm{~W}$	$\mathrm{G}=1 / 8 \mathrm{~W}$	$\mathrm{H}=1 / 6 \mathrm{~W}$	$\mathrm{~J}=1 / 4 \mathrm{~W}$
$\mathrm{~N}=3 / 4 \mathrm{~W}$	$\mathrm{P}=1 \mathrm{~W}$	$\mathrm{~S}=1 / 3 \mathrm{~W}$	$\mathrm{M}=1 / 2 \mathrm{~W}$		

[^0]: Remark: For more details, please check page 135, Part No. System

