

WAITRONY CO LIMITED

慧創就有限公司

Photo Conductive Cell, CdS, LDR 光敏電阻

Model No. : KE-10720

General Description:

By using the sintering film fabrication method, the manufacturing process of the photo conductive layer can offer high sensitivity and easy fabrication of large sensitive areas, a large mass production effect, and relatively superior production profitability

Features:

- Low Cost
- > Exceptional temperature stability
- Fast response time
- Excellent chopping capability

Applications:

- Automatic dimmer
- Automatice flasher
- Optical relay

Outline Dimensional Drawing

Electrical Characteristics

(Ta=25°C)

Descriptions	Symbol	Min.	Тур.	Max.	Unit
Photo Resistance at 10 Lux (Light Source: 2856K)	RL	10		20	kΩ
Dark Resistance After 10 sec. Removal of 10 Lux	RD	0.5	del		МΩ
Gamma Value at 10 ~ 100 Lux	γ 100 10	*1, 75000	0.7		
Maximum Power Dissipation	Po			35	mW
Maximum Breakdown Voltage	VMAX			100	VDC
Peak Spectral Response	λр	550		650	nm
Rise Response Time at 1 fc	tr		35		ms
Fall Response Time at 1 fc	tf		5		ms
Ambient Temperature	TΛ		-30 ~ +60		°C

^{*} Pre-measurement condition: Exposed in 500 Lux for more than 3 hours.

 γ value: Standard gradient rate of resistance ranged by $10 \sim 100$ Lux (± 0.1 unless otherwise stated)

$$\gamma_a^b = \frac{Log(R_b) - Log(R_a)}{Log(E_b) - Log(E_a)}$$

Where:

 R_x : Photo resistance as lighting x

Ex: Illumination as lighting x

Resistance vs Illumination

Relative Spectral Response

