DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4052B MSI

Dual 4-channel analogue
multiplexer/demultiplexer
Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4052B is a dual 4-channel analogue multiplexer/demultiplexer with common channel select logic. Each multiplexer/demultiplexer has four independent inputs/outputs $\left(Y_{0}\right.$ to Y_{3}) and a common input/output (Z). The common channel select logic includes two address inputs (A_{0} and A_{1}) and an active LOW enable input ($\overline{\mathrm{E}}$).

Both multiplexers/demultiplexers contain four bidirectional analogue switches, each with one side connected to an independent input/output (Y_{0} to Y_{3}) and the other side connected to a common input/output (Z).

With $\overline{\mathrm{E}}$ LOW, one of the four switches is selected (low impedance ON-state) by A_{0} and A_{1}. With E HIGH, all switches are in the high impedance OFF-state, independent of A_{0} and A_{1}.
$V_{D D}$ and $V_{S S}$ are the supply voltage connections for the digital control inputs (A_{0}, A_{1} and \bar{E}). The $V_{D D}$ to V_{SS} range is 3 to 15 V . The analogue inputs/outputs (Y_{0} to Y_{3}, and Z) can swing between $V_{D D}$ as a positive limit and $V_{E E}$ as a negative limit. $V_{D D}-V_{E E}$ may not exceed 15 V .

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to $\mathrm{V}_{\text {SS }}$ (typically ground).

PINNING

$Y_{0 A}$ to $Y_{3 A}$ independent inputs/outputs
$Y_{0 B}$ to $Y_{3 B}$ independent inputs/outputs
$\mathrm{A}_{0}, \mathrm{~A}_{1}$
$\overline{\mathrm{E}}$
Z_{A}, Z_{B} address inputs
enable input (active LOW)
common inputs/outputs

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications
$\sqrt{16} \sqrt{15} \sqrt{14} \sqrt{13} \sqrt{12} \sqrt{11} \sqrt{10}$ — 9

Fig. 2 Pinning diagram.

HEF4052BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4052BD(F): 16-lead DIL; ceramic (cerdip)
(SOT74)
HEF4052BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

Fig. 3 Schematic diagram (one switch).

FUNCTION TABLE

INPUTS			CHANNEL ON
$\overline{\mathrm{E}}$	A_{1}	A_{0}	
L	L	L	$Y_{0 A}-Z_{A} ; Y_{0 B}-Z_{B}$
L	L	H	$Y_{1 A}-Z_{A} ; Y_{1 B}-Z_{B}$
L	H	L	$Y_{2 A}-Z_{A} ; Y_{2 B}-Z_{B}$
L	H	H	$Y_{3 A}-Z_{A} ; Y_{3 B}-Z_{B}$
H	X	X	none

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
$X=$ state is immaterial

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage (with reference to $V_{D D}$)
VEE $\quad-18$ to $+0,5 \mathrm{~V}$

Note

1. To avoid drawing $V_{D D}$ current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed $0,4 \mathrm{~V}$. If the switch current flows into terminal Z , no V_{DD} current will flow out of terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed $V_{D D}$ or $V_{E E}$.

Fig. 4 Logic diagram.

DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

	$\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}}$	SYMBOL	TYP.	MAX.		CONDITIONS
ON resistance	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	Ron	$\begin{array}{r} 350 \\ 80 \\ 60 \end{array}$	$\begin{array}{r} 2500 \\ 245 \\ 175 \end{array}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=0 \text { to } V_{D D}-V_{E E} \\ & \text { see Fig. } 6 \end{aligned}$
ON resistance	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	Ron	$\begin{array}{r} 115 \\ 50 \\ 40 \end{array}$	$\begin{aligned} & 340 \\ & 160 \\ & 115 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=0 \\ & \text { see Fig. } 6 \end{aligned}$
ON resistance	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	Ron	$\begin{array}{r} 120 \\ 65 \\ 50 \end{array}$	$\begin{aligned} & 365 \\ & 200 \\ & 155 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=V_{\text {DD }}-V_{\text {EE }} \\ & \text { see Fig. } 6 \end{aligned}$
' \triangle ' ON resistance between any two channels	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\triangle \mathrm{R}_{\text {ON }}$	$\begin{array}{r} 25 \\ 10 \\ 5 \end{array}$	-	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{\text {is }}=0 \text { to } V_{D D}-V_{E E} \\ & \text { see Fig. } 6 \end{aligned}$
OFF-state leakage current, all channels OFF	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	lozz	-	$\begin{array}{r} - \\ - \\ 1000 \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	\bar{E} at $V_{D D}$
OFF-state leakage current, any channel	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	lozy	-	$\begin{array}{r} - \\ - \\ 200 \end{array}$	nA nA nA	$\overline{\mathrm{E}}$ at $\mathrm{V}_{\text {SS }}$

Fig. 5 Operating area as a function of the supply voltages.

Fig. 6 Test set-up for measuring R_{ON}.

$\mathrm{l}_{\text {is }}=200 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$

Fig. 7 Typical Ron as a function of input voltage.

Dual 4-channel analogue multiplexer/demultiplexer

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\mathbf{D D}}$	TYPICAL FORMULA FOR $\mathbf{P}(\mu \mathrm{W})$	
Vynamic power	5	$1300 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$6100 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$15600 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)	
			$\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD}	SYMBOL	TYP.	MAX.		
Propagation delays $\mathrm{V}_{\text {is }} \rightarrow \mathrm{V}_{\mathrm{os}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \end{aligned}$	ns ns ns	note 1
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \end{aligned}$	ns ns ns	note 1
$\mathrm{A}_{\mathrm{n}} \rightarrow \mathrm{~V}_{\mathrm{os}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 150 \\ 65 \\ 50 \end{array}$	$\begin{aligned} & 305 \\ & 135 \\ & 100 \end{aligned}$	ns ns ns	note 2
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} \hline 150 \\ 75 \\ 50 \end{array}$	$\begin{aligned} & \hline 300 \\ & 150 \\ & 100 \end{aligned}$	ns ns ns	note 2
Output disable times $\overline{\mathrm{E}} \rightarrow \mathrm{V}_{\text {os }}$ HIGH LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tPHZ	$\begin{aligned} & 95 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 190 \\ & 180 \\ & 180 \end{aligned}$	ns ns ns	note 3
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLZ }}$	$\begin{array}{r} 100 \\ 90 \\ 90 \end{array}$	$\begin{aligned} & 205 \\ & 180 \\ & 180 \\ & \hline \end{aligned}$	ns ns ns	note 3
Output enable times $\overline{\mathrm{E}} \rightarrow \mathrm{~V}_{\mathrm{os}}$ HIGH LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tpzH	$\begin{array}{r} 130 \\ 55 \\ 45 \end{array}$	$\begin{array}{r} 260 \\ 115 \\ 85 \end{array}$	ns ns ns	note 3
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PZL }}$	$\begin{array}{r} \hline 120 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} \hline 240 \\ 100 \\ 75 \end{array}$	ns ns ns	note 3

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	TYP.	MAX.	
Distortion, sine-wave response	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		$\begin{aligned} & \hline 0,25 \\ & 0,04 \\ & 0,04 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \\ & \% \end{aligned}$	note 4
Crosstalk between any two channels	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		- 1 -	MHz MHz MHz	note 5
Crosstalk; enable or address input to output	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		$\begin{array}{r} - \\ 50 \end{array}$	mV mV mV	note 6
OFF-state feed-through	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		$\begin{aligned} & - \\ & 1 \\ & - \end{aligned}$	MHz MHz MHz	note 7
ON-state frequency response	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$		$\begin{aligned} & 13 \\ & 40 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	note 8

Notes

$V_{\text {is }}$ is the input voltage at a Y or Z terminal, whichever is assigned as input.
$V_{\text {os }}$ is the output voltage at a Y or Z terminal, whichever is assigned as output.

1. $R_{L}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{EE}} ; \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); see Fig.8.
2. $R_{L}=10 \mathrm{k} \Omega ; C_{L}=50 \mathrm{pF}$ to $\mathrm{V}_{E E} ; \bar{E}=\mathrm{V}_{\mathrm{SS}} ; \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); $\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{DD}}$ and R_{L} to $\mathrm{V}_{E E}$ for $t_{P L H} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{E E}$ and R_{L} to $V_{D D}$ for $t_{P H L}$; see Fig.8.
3. $R_{L}=10 \mathrm{k} \Omega ; C_{L}=50 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{EE}} ; \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave);
$V_{\text {is }}=V_{D D}$ and R_{L} to $V_{E E}$ for $t_{P H Z}$ and $t_{P Z H}$;
$V_{\text {is }}=V_{E E}$ and R_{L} to $V_{D D}$ for $t_{P L Z}$ and $t_{P z L}$; see Fig.8.
4. $R_{L}=10 \mathrm{k} \Omega ; C_{L}=15 \mathrm{pF}$; channel $\mathrm{ON} ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $\mathrm{f}_{\text {is }}=1 \mathrm{kHz}$; see Fig. 9 .
5. $R_{L}=1 \mathrm{k} \Omega ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$); $20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-50 \mathrm{~dB}$; see Fig. 10.
6. $R_{L}=10 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{EE}} ; \overline{\mathrm{E}}$ or $\mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{DD}}$ (square-wave); crosstalk is $\left|\mathrm{V}_{\text {os }}\right|$ (peak value); see Fig.8.
7. $R_{L}=1 \mathrm{k} \Omega ; C_{L}=5 \mathrm{pF}$; channel OFF; $\mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}}{ }_{(p-p)}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$);
$20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-50 \mathrm{~dB}$; see Fig. 9.
8. $R_{L}=1 \mathrm{k} \Omega ; C_{L}=5 \mathrm{pF}$; channel $\mathrm{ON} ; \mathrm{V}_{\text {is }}=1 / 2 \mathrm{~V}_{\mathrm{DD}(\mathrm{p}-\mathrm{p})}$ (sine-wave, symmetrical about $1 / 2 \mathrm{~V}_{\mathrm{DD}}$);
$20 \log \frac{V_{\text {os }}}{V_{\text {is }}}=-3 \mathrm{~dB}$; see Fig. 9.

Fig. 8

Fig. 9

Fig. 10

APPLICATION INFORMATION

Some examples of applications for the HEF4052B are:

- Analogue multiplexing and demultiplexing.
- Digital multiplexing and demultiplexing.
- Signal gating.

NOTE

If break before make is needed, then it is necessary to use the enable input.

