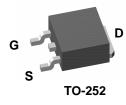
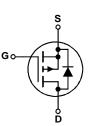


ON Semiconductor®

FDD6685


30V P-Channel PowerTrench^o MOSFET


General Description

This P-Channel MOSFET is a rugged gate version of ON Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5V - 25V).

Features

- -40 A, -30 V. $R_{DS(ON)} = 20 \text{ m}\Omega @ V_{GS} = -10 \text{ V}$ $R_{DS(ON)} = 30 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$
- Fast switching speed
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability
- Qualified to AEC Q101

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-30	V
V _{GSS}	Gate-Source Voltage		±25	V
I _D	Continuous Drain Current @Tc=25°C	(Note 3)	-40	
	@T _A =25°C	(Note 1a)	-11	A
	Pulsed, PW ≤ 100	0µS (Note 1b)	-100	
PD	Power Dissipation for Single Operation	(Note 1)	52	W
		(Note 1a)	3.8	
		(Note 1b)	1.6	
T _J , T _{STG}	Operating and Storage Junction Temperat	ure Range	-55 to +175	°C

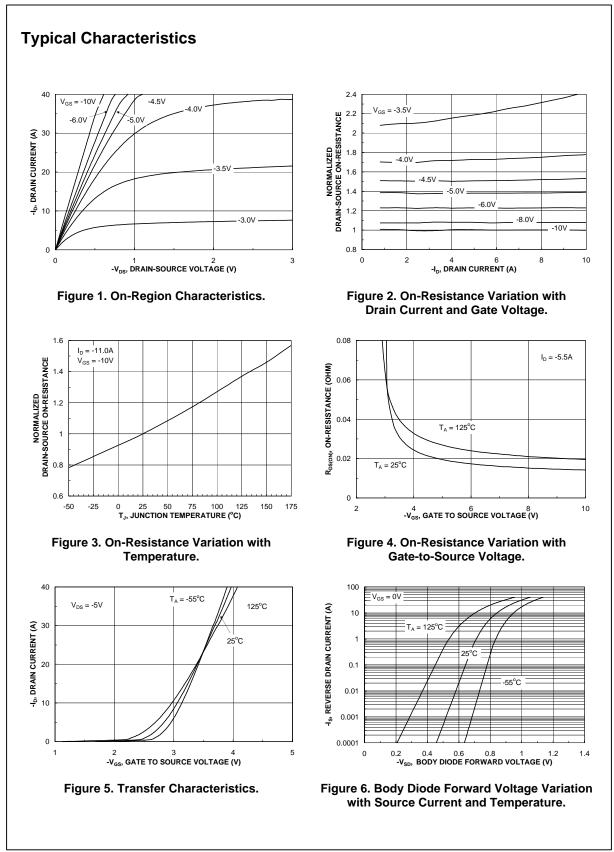
Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	2.9	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W

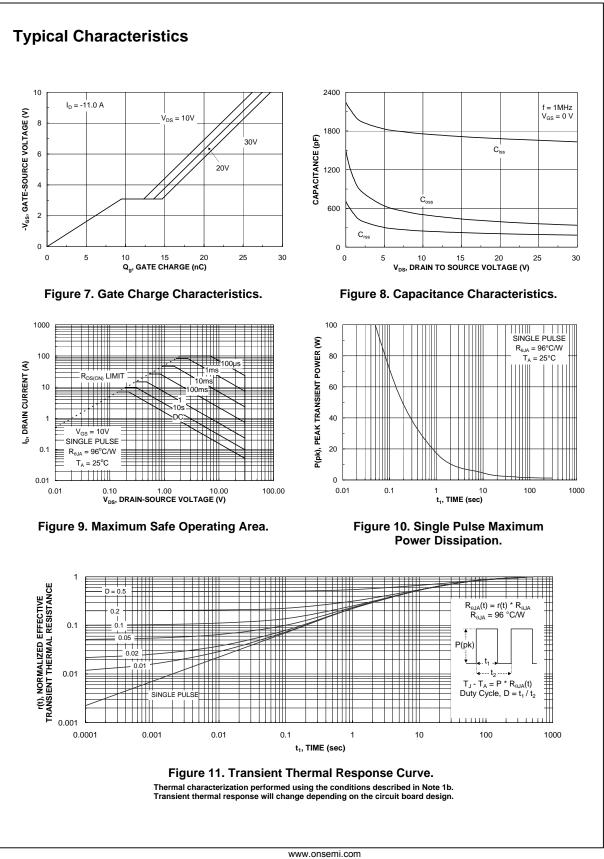
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at http://www.aecouncil.com/

All ON Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

©2011 Semiconductor Components Industries, LLC. September-2017, Rev. 2


Publication Order Number: FDD6685/D

FDD6685


Device Marking Device		Reel Size Tape Wi		dth Quantity			ity	
FDD	6685	FDD6685	13"	13" 16mm		n 2500 units		
Electric	al Char	acteristics	$T_{\Delta} = 25^{\circ}C$ unless otherwise	noted				
Symbol		Parameter	Test Condi		Min	Тур	Max	Units
Drain-So	urce Aval	anche Ratings (Note	e 4)					
E _{AS}		se Drain-Source	$I_{\rm D} = -11 \text{ A}$			42		mJ
AS	Maximum Avalanche	Drain-Source Current				-11		A
Off Chara	acteristics	5						
BV _{DSS}	Drain-Sou	rce Breakdown Voltage	$V_{GS} = 0 V, I_D = -250$	μA	-30			V
<u>ΔBVdss</u> ΔTj	Breakdowr Coefficient	N Voltage Temperature	$I_D = -250 \ \mu A$, Refere			-24		mV/°C
DSS	Zero Gate	Voltage Drain Current	$V_{DS} = -24 \text{ V}, V_{GS} =$				-1	μA
GSS	Gate-Body	/ Leakage	$V_{GS} = \pm 25V$, $V_{DS} =$	0 V			±100	nA
On Chara	acteristics	5 (Note 2)						
V _{GS(th)}	Gate Three	shold Voltage	$V_{DS} = V_{GS}, I_D = -250$	μA	-1	-1.8	-3	V
$\Delta V_{GS(th)} \Delta T_J$		shold Voltage re Coefficient	$I_D = -250 \ \mu A$, Refere	nced to 25°C		5		mV/°C
R _{DS(on)}	Static Drai On–Resist		$ \begin{array}{ll} V_{GS} = -10 \ V, & I_D = \\ V_{GS} = -4.5 \ V, & I_D = \\ V_{GS} = -10 \ V, I_D = -11 \end{array} $	–9 A		14 21 20	20 30	mΩ
D(on)	On-State I	Drain Current	$V_{GS} = -10 \text{ V}, \qquad V_{DS}$		-20			А
g fs	Forward Tr	ansconductance	$V_{DS} = -5 V$, $I_D =$	–11 A		26		S
Dynamic	Characte	eristics						
Ciss	Input Capa		$V_{DS} = -15 V$, V_{GS}	= 0 V,		1715		pF
Coss	Output Ca	pacitance	f = 1.0 MHz 440			pF		
C _{rss}	Reverse T	ransfer Capacitance	-			225		pF
R _G	Gate Resis	stance	V_{GS} = 15 mV, f =	1.0 MHz		3.6		Ω
Switchin	a Charact	eristics (Note 2)						
d(on)	Turn–On D	, ,	$V_{DD} = -15 V$, $I_D =$	–1 A,		17	31	ns
t _r	Turn–On R	Rise Time	$V_{GS} = -10 V$, R_{GE}			11	21	ns
d(off)	Turn–Off D	elay Time	-			43	68	ns
f	Turn–Off F	all Time				21	34	ns
Qg	Total Gate	Charge	$V_{DS} = -15V$, $I_D =$	–11 A,		17	24	nC
Q _{gs}	Gate-Sour	ce Charge	$V_{GS} = -5 V$			9		nC
Q_{gd}	Gate-Drain	n Charge				4		nC
Drain-Sc	ource Dio	de Characteristics	and Maximum Ra	atings				
V _{SD}		rce Diode Forward	$V_{GS} = 0 V, I_{S} = -3.2$			-0.8	-1.2	V
Trr		erse Recovery Time	IF = -11 A,			26		ns
Qrr	Diode Rev	erse Recovery Charge	diF/dt = 100 A/µs			13		nC

	ristics	$T_A = 25^{\circ}C$ unless otherwise noted
Notes:		
$R_{\theta,JA}$ is the sum of the junction-to-case	and case-to-	ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of
the drain pins. $R_{\theta,JC}$ is guaranteed by	design while F	$R_{\theta CA}$ is determined by the user's board design.
-	a) F	b) R _{BJA} = 40°C/W when mounted on a b) R _{BJA} = 96°C/W when mounted on a minimum pad.
-	1	in ² pad of 2 oz copper on a minimum pad.
cale 1 : 1 on letter size paper		
Pulse Test: Pulse Width < 300µs, Dut	y Cycle < 2.0%	6
Maximum current is calculated as:	$\sqrt{R_{DS(ON)}}$	where P_D is maximum power dissipation at T_C = 25°C and $R_{DS(on)}$ is at $T_{J(max)}$ and V_{GS} = 10V.
Starting $T_J = 25^{\circ}C$, L = 0.69mH, $I_{AS} =$	–11A	

v.onser 3

FDD6685

5

FDD6685

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative