

APPLICATION NOTE

VACUUM FLUORESCENT DISPLAY MODULE

GRAPHIC DISPLAY MODULE

GP9002A03A

FUTABA GP9002A03A is a graphic display module using a FUTABA 127×64 VFD.

Consisting of a VFD, display drivers and a control circuit, the module can be driven by connecting to the host system through a simple interface.

/ Important Safety Notice

Please read this note carefully before using the product.

Warning

- The module should be disconnected from the power supply before handling.
- The power supply should be switched off before connecting or disconnecting the power or interface cables.
- The module contains electronic components that generate high voltages (approx.64V) which may cause an electrical shock when touched.
- Do not touch the electronic components of the module with any metal objects.
- The VFD used on the module is made of glass and should be handled with care. When handling the VFD, it is recommended that cotton gloves be used.
- The module is equipped with a circuit protection fuse.
- Under no circumstances should the module be modified or repaired.

 Any unauthorized modifications or repairs will invalidate the product warranty.
- The module should be abolished as the factory waste.

CONTENTS

1. FEATURES	1
2. GENERAL DESCRIPTION	
2-1. DIMENSIONS, WEIGHT	1
2-2. SPECIFICATIONS OF THE DISPLAY PANEL	1
2-3. ENVIRONMENT CONDITIONS	1
2-4. ABSOLUTE MAXIMUM RATINGS	2
2-5. RECOMMENDED OPERATING CONDITIONS	2
2-6. ELECTRICAL CHARACTERISTICS	2
3. BASIC FUNCTION	
3-1. FUNCTION TABLE	3
3-2. FUNCTION OF SIGNAL LINES	3
3-3. COMMAND TABLE ·····	4
3-4. RELATIONSHIP OF THE DISPLAY AREA TO	5
3-5. FUNCTION OF COMMANDS	6~10
4. INTERFACE CONNECTION	11
5. TIMING CHART	
5-1. THE PARALLEL INTERFACE	12
5-2. SYNCHRONOUS SERIAL INTERFACE	13~14
5-3. INT TIMING	14
6. THE INITIALIZE AFTER POWER- ON	14
FIGURE-3 OUTER DIMENSION	15
FIGURE-4 CIRCUIT BLOCK DIAGRAM	16
FONT TABLE	17
7. WARRANTY	18
8. CAUTIONS FOR DETERMINING AND EXPORTING REGULATED GOODS OR SERVICES	18
9. CAUTIONS FOR OPERATION	18
10.THE ENVIRONMENTAL SPENIFICATIONS FOR THIS PRODUCT SERVICES	19

1. FEATURES

GP9002A03A is a graphic display module using a FUTABA VFD.

It consists of a control ASIC with internal Static-RAM of 2048bytes and a power circuit.

The Interface can be selected from 8bit Parallel or synchronous serial.

The module has the functions to overlap two screens and to display gray scale of 4 levels.

The necessary power supply is 3.3V DC and 5V DC by the built-in power supply circuit specialized for VFD.

2. GENERAL DESCRIPTION

2-1. DIMENSIONS, WEIGHT (Refer to FIGURE-3)

Table-1

Item	Specification	Unit
	(W) 108±1	
Outer dimensions	(H) 57.5±1	mm
	(T) 20.8 MAX.	
Weight	Approx. 85	g

2-2. SPECIFICATIONS OF THE DISPLAY PANEL

Table-2

		1 4010 2
Item	Specification	Unit
Display Area	57.03(W)×28.68(H)	mm
Number of Dots	127×64	Dot
Dot Size (H×W)	0.33×0.33	mm
Dot Pitch (H×W)	0.45×0.45	mm
Color Illumination (VFD)	Green (λ p=505nm)	_
Luminance	500 (Typ)	cd/m ²

Note) By using a filter, uniform color range from blue to orange (including white) can be obtained.

2-3. ENVIRONMENT CONDITIONS

Table-3

				Tuere s
Item	Symbol	Min.	Max.	Unit
Operation Temperature	<i>T</i> opr	-20	+70	°C
Storage Temperature	Tstg	-30	+80	°C
Operating Humidity	Hopr	20	85	%
Storage Humidity	Hstg	20	90	%
Vibration (10 ~ 55Hz)	_	_	4	G
Shock	_	_	40	G

Note) Avoid operations and or storage in moist environmental conditions.

2-4. ABSOLUTE MAXIMUM RATINGS

Table-4

Item	Symbol	Min.	Max.	Unit
Supply Voltage	Vcc	-0.3	6.0	V
Supply Voltage	Vcc2	-0.5	4.0	V
Input Signal Voltage	$V_{\rm I}$	-0.5	Vcc2+0.5	V

2-5. RECOMMEND OPERATING CONDITIONS

Table-5

Item	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Supply Voltage	Vcc2	3.0	3.3	3.6	
H-Level Input Voltage	$V_{ m IH}$	V cc2 \times 0.7	-	Vcc2	V
L-Level Input Voltage	$V_{ m IL}$	0	_	V cc2 \times 0.2	V

2-6. ELECTRICAL CHARACTERISTICS

Table-6

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Supply Current	<i>I</i> cc	V 5 0V 1	_	500	650	mA
Suppry Current	Icc2	Vcc=5.0Vdc Vcc2=3.3Vdc	-	30	50	mA
Power Consumption	_	All on	_	2.5	3.5	W
Luminance (VFD)	L	An on	250	500	1	cd/m ²
H-Level Output Voltage	$V_{ m OH}$	$I_{\rm OH}$ = -2mA	$Vcc_2-0.6$	ı	Vcc2	V
L-Level Output Voltage	$V_{ m OL}$	$I_{\rm OL} = 2 \rm mA$	0	ı	0.4	V

Note) The surge current can be approx. 5 times the specified supply current at power on. Note2) When the module is started up, it is no problem whichever Vcc or Vcc2 applies in first.

3. BASIC FUNCTION

- 3-1. Function Table
- 3-2. Function of Signal Lines
- 3-3. Command Table
- 3-4. Relationship of The Display Area to Address and Data
- 3-5. Function of Commands

3-1. Function Table

Table-7

CS	$\overline{\mathrm{WR}}$	$\overline{\text{RD}}$	C/\overline{D}	MODE
L	1	Н	Н	Command Write-in
L	1	Н	L	Data Write-in
L	Н	L	Н	_
L	Н	L	L	Data Read-out

note)If the interface is selected Serial, please refer to 5-2 Timing Chart.

3-2. Function of Signal Lines

Table-8

Signal	I/O	Function
D0~D7	I/O	8bit Data Bus
WR	I	Write Signal
$\overline{\text{RD}}$	I	Read Signal
CS	I	Chip Select Signal
		Command / Data Select Signal
C/\overline{D}	I	$C/\overline{D} = "H" : Command$
		C/D="L": Data Write and Data Read
INT	О	Frame Signal (One output pulse per one display frame)
SEL	I	Port to switch the interface.
		Open: Parallel Connect to GND: synchronous serial
SCLK	I	Synchronous Clock Signal
SI	I	Synchronous Input Signal
SO	О	Synchronous Output Signal
Vcc		+5V (for VFD supply)
Vcc2	_	+3.3V (for Logic)
GND	_	GND

3-3. Command Table

The followings are all commands of this module.

After writing the command, necessary setting data should be written.

Table-9

Command $(C/\overline{D} = "H")$	Setting Data $(C/\overline{D} = "L")$	Function	Default Select
00H	——————————————————————————————————————	1 st & 2 nd Screens are Displayed off	O
01H		1 st Screen is Displayed on	
02H		2 nd Screen is Displayed on	
04H	_	Read/Write address is automatically incremented	0
05H		Read/Write address is held	
06H	_	Clear Screen	
07H	D0~D7	Control Power supply	00H
08H	D0~D7	Display data write-in	
09H	D0~D7	Display data read-out	
0AH	D0~D7	Setting lower address for 1 st Screen started	00H
0BH	D0~D3	Setting upper address for 1 st Screen started	00H
0CH	D0~D7	Setting lower address for 2 nd Screen started	00H
0DH	D0~D3	Setting upper address for 2 nd Screen started	00H
0EH	D0~D7	Setting lower address of Read/Write	00H
0FH	D0~D3	Setting upper address of Read/Write	00H
10H	_	Display OR of 1 st & 2 nd Screens	
11H		Display EX-OR of 1 st & 2 nd Screens	
12H		Display AND of 1 st & 2 nd Screens	
13H	D0~D7	Luminance Adjustment	00H
14H	D0~D7	Display Mode	00H
15H	D0~D7	INT Signal Mode	00H
20H	D0~D7	Display Character	
21H	D0~D7	Setting the Character Starting Location of RAM	(X,Y) =(00H, 00H)
22Н	D0~D7	Setting Size of Character	(X,Y) =(00H, 00H)
24H	D0∼D7	Setting Brightness of Character	00H

Note) "—" in the above table is shown that the setting data is not needed.

3-4. Relationship of The Display Area to Address and Data
The following map is shown in case of 000H or display start address.
The actual display area is the part of enclosing with the solid line of FIG.1 and FIG.2.
FIG.1 & FIG.3 indicate the map at start address to set to 000H.

		1	7	\mathcal{E}		126	127	128	129	_	254	255	256
8-1	D0-D7	0	8	10		3E8	3F0	3F8	400		7E8	7F0	7F8
16-9	70-07 00-07 00-07 00-07 00-07 00-07 00-07	1	6	111		3E9	3F1	3F9	401		7E9	7F1	7F9
24-17	D0-D7	2	Α	12		3EA	3F2	3FA	402		7EA	7F2	7FA
32-25	D0-D7	3	В	13		3EB	3F3	3FB	403		7EB	7F3	7FB
64-57 56-49 48-41 40-33 32-25 24-17 16-9	D0-D7	4	С	14		3EC	3F4	3FC	404		7EC	7F4	7FC
48-41	D0-D7	5	D	15		3ED	3F5	3FD	405		7ED	7F5	7FD
56-49	D0-D7	9	E	16		3EE	3F6	3FE	406		7EE	7F6	7FE
64-57	D0-D7	7	F	17		3EF	3F7	3FF	407		7EF	7F7	7FF

FIG.1 Position of display dot to address and data

		_	7	ε	4		126	127	128	129			254	255	256
8-1	D0-D7	7F0	7F8	0	8		3D8	3E0	3E8	3F0			7C8	7E1	7E8
16-9	D0-D7	7F1	7F9	1	9		3D9	3E1	3E9	3F1			7C9	7E2	7E9
24-17	D0-D7	7F2	7FA	2	A		3DA	3E2	3EA	3F2			7CA	7E2	7EA
32-25	D0-D7	7F3	7FB	3	В		3DB	3E3	3EB	3F3			7CB	7E3	7EB
40-33	D0-D7	7F4	7FC	4	C		3DC	3E4	3EC	3F4			7CC	7E4	7EC
48-41	D0-D7	7F5	7FD	5	D		3DD	3E5	ЗЕD	3F5			7CD	7E5	7ED
64-57 56-49 48-41 40-33 32-25 24-17	D0-D7 D0-D7 D0-D7 D0-D7 D0-D7 D0-D7 D0-D7	7F6	7FE	6	E		3DE	3E6	3EE	3F6			7CE	7E6	7EE
64-57	D0-D7	7F7	7FF	7	F		3DF	3E7	3EF	3F7			7CF	7E7	7EF
	TC.	2 1	ndi	anto	the	me	n 01	- ata	art a	ddr	000	to c	ot to	. 7L	20H

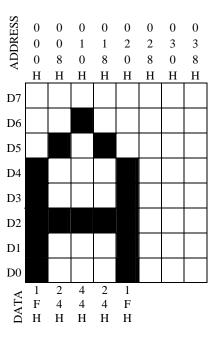


FIG. 2 Indicate the map at start address to set to 7F0H

Note) If the Screen mode is selected Gray scale mode, The total RAM area is 128 x 64.

3-5. Function of Commands

3-5-1. Screen Display on / off Control (00H, 01H, 02H, 03H)

The latest command becomes effective.

At power on, 1st and 2nd screens are set to Display off mode.

Therefore, the Display on mode command should be written in, after display pattern data input.

In case of executing Display on mode before display data input at initial, random pattern may be displayed.

3-5-2. Setting of Write Address Mode (04H, 05H)

These commands select either the write or read address is incremented by single step automatically or is held after data write and data read.

When a memory address is set to 7FFH, next memory address is set to 000H.

3-5-3. Clear Screen (06H)

Data of all area of screen RAM are filled with 00H.

After this command, all command is canceled in approximately 300µ.

3-5-4. Control Power supply(07H)

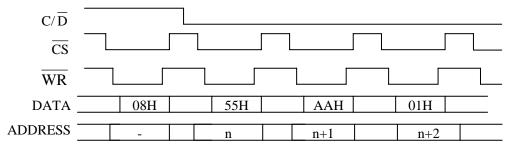
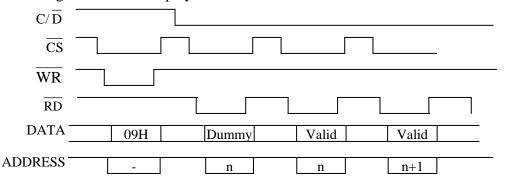

The Power supply in the module is turned off by this command.

Table-10

Mode	D7	D6	D5	D4	D3	D2	D1	D0
Power ON	0	0	0	0	0	0	0	0
Power OFF	0	0	0	0	0	0	0	1

3-5-4. Data Write (08H)

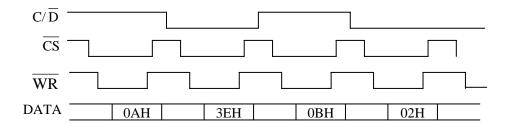

After executing the Write address setting command, this command shall be executed. The following indicate the display data 55H, AAH and 01H write-in.

3-5-5. Data Read (09H)

After executing the Read address setting command, this command shall be executed. Dummy read is necessary. The correct data can be read from the second byte.

The following indicate the display data read out.

3-5-6. Setting of Display Start Address (0AH, 0BH, 0CH, 0DH)


The display start address is just pointed to the left and top line of the display area.

1st and 2nd screens can be independently set the display start address each other.

This address is divided to the two portions with upper (four bits) and lower (eight bits) address, and lower address shall be set first, then set the upper address.

The smooth scroll of displaying can be achieved by synchronizing with the change of display address by the INT signal at every frame.

The following indicate the display start address of 1st screen to set to 23EH.

3-5-7. Setting of Write/Read Address (0EH, 0FH)

This command is set the write/read address of displaying data.

This address is divided the two portions with upper (four bits) and lower (eight bits) address, and lower address shall be set first, then set the upper address.

Only the upper address is available to be changed independently.

When the lower address is changed, it is required to change the both address.

3-5-8. Screen OR / EX-OR / AND Display Select (10H, 11H, 12H)

The latest command becomes effective. These commands set both 1st and 2nd screens on.

3-5-10. Luminance Adjustment (13H)

Write-in data allows luminance to be adjusted.

When the module is turned on, it is set to level 100%.

Table-11

Luminance	Input Data				
Lummance	No gray scale mode	Gray scale mode			
100% (Max.)	00H	00H			
90%	06H	07H			
80%	0CH	0EH			
70%	12H	15H			
60%	18H	1CH			
50%	1EH	24H			
40%	24H	2BH			
30%	2AH	32H			
0% (Display blank)	FFH	FFH			

Note1) Write-in data (FFH) allows luminance to be 0%.

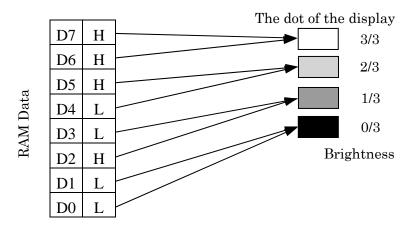
Note2) Write-in data is available from 00H to 2AH with no gray scale mode.

Note3) Write-in data is available from 00H to 32H with gray scale mode.

Note4) Write-in data (from 2BH to FEH) prohibits with no gray scale mode.

Note5) Write-in data (from 33H to FEH) prohibits with gray scale mode.

3-5-10. Display Mode (14H)


When the module is turned on, it has to be selected the following display mode before other command is sent.

The display mode can be selected no gray scale mode or gray scale mode with 4 levels of brightness.

Table-12

Mode	D7	D6	D5	D4	D3	D2	D1	D0
No gray scale mode	1	1	0	1	0	0	0	0
Gray scale mode	1	1	0	1	0	1	0	0

If the mode is gray scale, each dot has one of 4 brightness levels. The relationship between the data and the display brightness is as follows. 4 levels gradation is able to be displayed 1 dot by 2 bits data of D7-D6, D5-D4, D3-D2, and D1-D0.

3-5-11. INT Signal mode (15H)

This command sets the mode of INT signal.

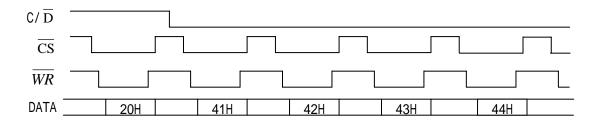
Table-13

Signal Mode	D7	D6	D5	D4	D3	D2	D1	D0
No signal	0	0	0	1	0	0	0	0
Positive	0	0	0	1	0	0	0	1
Negative	0	0	0	1	0	0	1	1

3-5-12. Display Character(20H)

Display the Character with Font ROM.

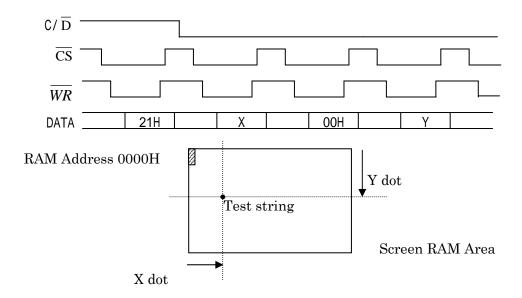
Character location of the RAM is applied by the following commands.


• Setting the Character Starting Location of RAM (Command 21H)

Before the character is displayed, Setting the Font (23H) must be done.

• Setting the Font (Command 23H)

After this Display Character(20H), the data should be written as string. If the character is displayed, the location of character will be moved. The following indicate when the string "ABCD" is displayed.


The characters that are not defined in the font table are ignored.

3-5-13. Setting the Character Starting Location of RAM(21H)

By this command the location of character is set.

X and Y should be set.

3-5-15. Setting Size of Character (22H)

By this command the size of character is set.

X and Y should be set.

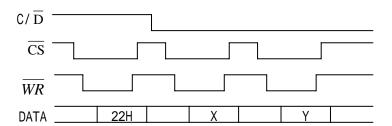


Table-14

		00H	Normal	
Size	V	01H	Double width	
	A	X 02H	Triple width	
		03H	Quad width	
	***	00H	Normal	
		01H	Double height	
	Y	02H	Triple height	
		03H	Quad height	

Note) The only Y = 00H can be set with grey scale mode.

3-5-16. Setting Brightness of Character (24H)

By this command the brightness of character is set.

Table-15

	14010 15				
	00H	Brightness 3/3			
Gray Scale number	01H	Brightness 2/3			
	02H	Brightness 1/3			

Note) This command is invalid with no gray scale mode.

4. INTERFACE CONNECTION

(a) Selected the Parallel (SEL is open)

Table - 16

Pin No.	Description	Pin No.	Description
1	Vcc	2	Vcc
3	GND	4	GND
5	Vcc2	6	GND
7	RD	8	WR
9	C/\overline{D}	10	/CS
11	D6	12	D7
13	D4	14	D5
15	D2	16	D3
17	D0	18	D1
19	SEL	20	INT

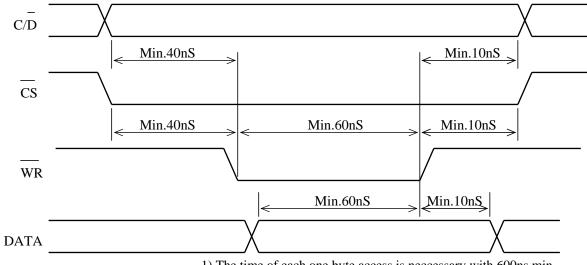
Note1) All GND pins are connected in the module.

Note2) Please don't connect any to the No.20(SEL).

(b) Selected the synchronous serial (SEL is connected to GND.)

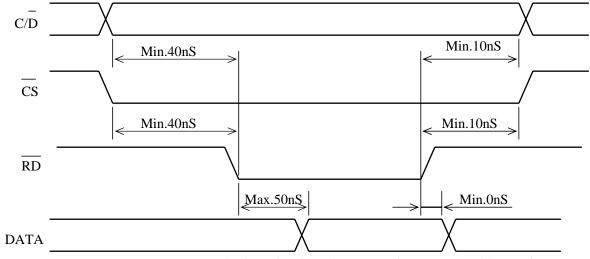
Table - 17

			Table 17
Pin No.	Description	Pin No.	Description
1	Vcc	2	Vcc
3	GND	4	GND
5	Vcc2	6	GND
7	SI	8	SCLK
9	C/\overline{D}	10	/CS
11	N.C. (open)	12	N.C. (open)
13	N.C. (open)	14	N.C. (open)
15	N.C. (open)	16	N.C. (open)
17	N.C. (open)	18	SO
19	SEL	20	INT


Note1) All GND pins are connected in the module.

Note2) Please connect GND to the No.20(SEL).

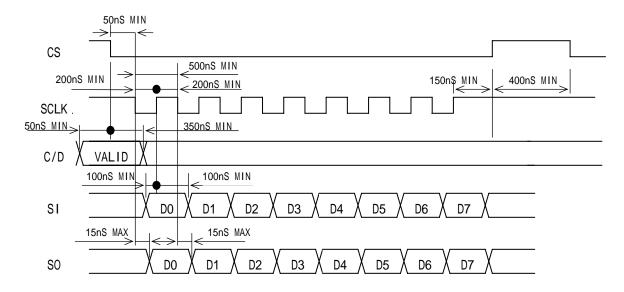
5. TIMING CHART


5-1. The Parallel interface

5-1-1. Write-in timing

1) The time of each one byte access is neccessary with 600ns min.

5-1-2. Read-out timing


1) The time of each one byte access is neccessary with 1us min.

5-2 Synchronous serial interface

The SI signal should be input from the LSB.

The SI signal is gotten when the SCLK rises.

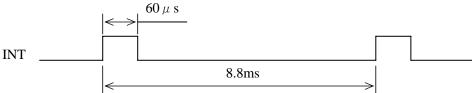
The distinction of SI signal between DATA and COMMAND depends C/D signal when CS is down.

Ex.1) Display data write-in (the way to write 2 bytes of display data.)

Table-18

		1 aute-16
Step	Content from host	Epexegesis
1	Output 'H' to C/D	
2	CS↓	The usage of SI signal after this step is determined. By the step1, The SI signal is command because of C/D='H'.
3	Send 08H to SI	Command 08H Display data write-in
4	CS ↑	
5	Output 'L' to C/D	
6	CS ↓	The usage of SI signal after this step is determined. By the step5, The SI signal is data because of C/D='L'. In addition, the 400ns interval needs between step4 and step 6.
7	Send 55H to SI	Display data 55H write-in
8	Send 21H to SI	Display data 21H write-in In addition, the 600ns interval needs between step7 and step 8.
9	CS ↑	

Table-19


Step	Content from host	Epexegesis
1	Output 'H' to C/D	
2	CS↓	The usage of SI signal after this step is determined.
		By the step1, The SI signal is command because of C/D='H'.
3	Send 09H to SI	Command 09H Display data read-out
4	CS ↑	
5	Output 'L' to C/D	
6	CS↓	The usage of SI signal after this step is determined.
		By the step5, The SI signal is ignore because of
		C/D='L'.
		In addition, the 400ns interval needs between step4
		and step 6.
7	Receive 1byte from SO	Dummy read-out
8	Receive 1byte from SO	Display data read-out (First byte)
		In addition, the 1us interval needs between step7 and
		step 8.
9	Receive 1byte from SO	Display data read-out (Second byte)
		In addition, the 1us interval needs between step8 and
		step 9.
10	CS ↑	

5-3. INT timing

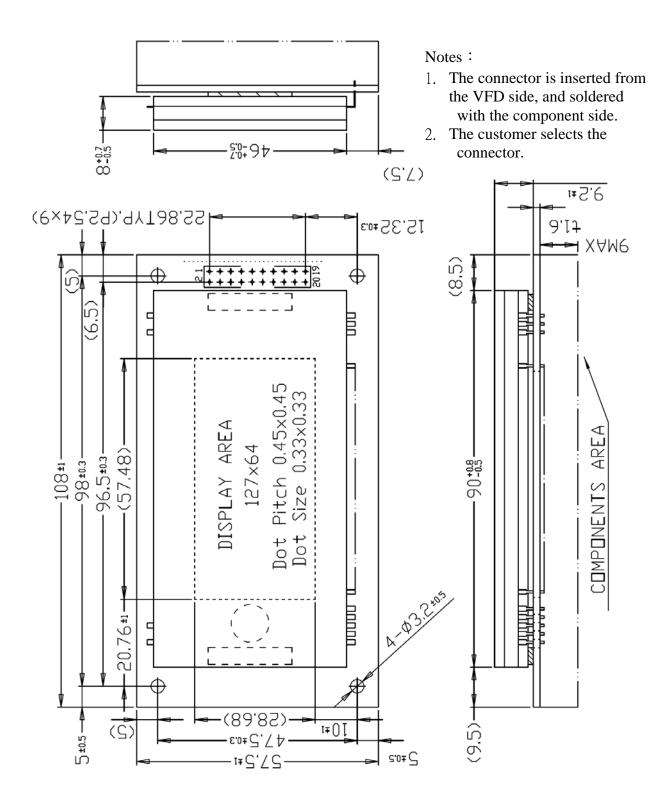
INT signal synchronizes frame frequency. The module generates 60 μ sec of INT signal at every 8.8msec.

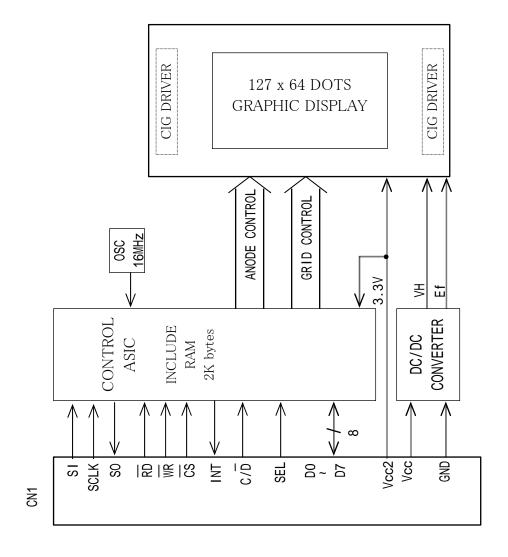
For smooth scroll, Setting Start Address should be executed during period of INT= "H".

(INT="L", if logic mode is negative.)

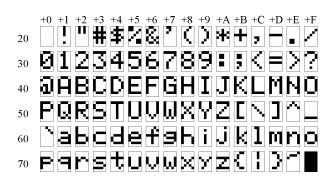
6. The initialize after power-on

The initialize should be done after power-on by host.


The following command is used in initialize.


·command 14H Display Mode

Ex.) To turn on a pixel which located in 10th from screen left end and 4th from screen top end.


(Parallel Interface) Table-20

	(11400)	1 4010
Step	Content from host	Epexegesis
1	C/D='H' 14H WR↓	Display Mode command
2	C/D='L' 50H WR↓	The display mode (no gray scale mode)
3	C/D='L' 06H WR↓	Clear Screen (06H)
4	C/D='H' 01H WR↓	1 st Screen is Displayed on (01H)
5	C/D='H' 0EH WR↓	Setting lower address of Write
6	C/D='L' 48H WR ↓	Setting lower address 48H
7	C/D='H' 0FH WR↓	Setting upper address of Write
8	C/D='L' 00H WR↓	Setting upper 3bits 000B
9	C/D='H' 08H WR↓	Display data write-in(08H)
10	C/D='L' 10H WR↓	The display data 10H

Font Tables

7. WARRANTY

This display module is guaranteed for 1 year after the shipment from FUTABA.

8. CAUTIONS FOR DETERMINING AND EXPORTING REGULATED GOODS OR SERVICES

This product does not correspond to the goods or services regulated by Japan's Foreign Exchange and Foreign Trade Law. If this product is combined with other products in order to make equipment, whether this product is regulated or not is judged by such newly made equipment. We ask you to determine by yourself whether the equipment corresponds to the regulated goods when this product is incorporated in the equipment. We also ask you to confirm that this product will not be incorporated in any weapon or used for manufacturing any weapon.

If you export or re-export this product, we recommend you to adopt measures for appropriate export procedures, if any.

9. CAUTIONS FOR OPERATION

- 9-1. Applying lower voltage than the specified may cause non activation for selected pixels.
 - Conversely, higher voltage may cause non-selected pixel to be activated. If such a phenomenon is observed, check the voltage level of the power supply.
- 9-2. The DC/DC converter generates approximately 64Vdc, avoid touching it with bare hands, or to other circuits.
- 9-3. Avoid using the module where excessive noise interface is expected.Noise affects the interface signal and causes improper operation.Keep the length of the interface cable less than 30cm.(When the longer cable is required, please confirm there is no noise affection.)
- 9-4. When power is turned off, the capacitor will not discharge immediately. Avoid touching IC and others.The shorting of the mounted components within 30 sec., after power off, may cause damage.
- 9-5. When fixed pattern is displayed for a long time, you may see uneven luminance. It is recommended to change the display patterns sometimes in order to keep best display quality.
- 9-6. DC/DC converter is equipped on the module, the surge current may be approximately 5 times the specified supply current at the power on.

10. The environmental specifications for this product

10-1. With respect to EU RoHS Directive

The contained amount of six prohibited substances in this product , which are cadmium, hexavalent chromium, lead, mercury, polybrominated biphenyl:PBB and polybrominated

diphenyl ether :PBDE, is less than the permitted level stipulated in the EU RoHS Directive, or these substances are not included in the Directive.

The substances excluded are based on Article 4 of the EU RoHS Directive.

10-2. With respect to Chinese RoHS

This product contains only "lead and its compound" from among six controlled substances, which are cadmium, hexavalent chromium, lead, mercury, polybrominated biphenyl:PBB and polybrominated diphenyl ether:PBDE.

The contained amount of the controlled substances except lead and its compound in this product is less than the level stipulated in the Chinese RoHs.

As for the display of information on containing EHS, please refer to the following.

- < Display of information on containing EHS >
- *Product and part the substances are contained : Vacuum Fluorescent Display(VFD)
- *Chemical materials contained: Lead and its compound
- *Time limit of use for environmental protection : 10 years
- *Reason for containing the substances: No materials are available except them under the current technology.

REMARKS:

The specification is subject to change without prior notice.

Your consultation with FUTABA sales office is recommended for the use of this module.