

CD4093B Types

CMOS **Quad 2-Input NAND Schmitt Triggers**

High-Voltage Types (20 Volt Rating)

CD4093B consists of four Schmitttrigger circuits. Each circuit functions as a two-input NAND gate with Schmitt-trigger action on both inputs. The gate switches at different points for positive- and negativegoing signals. The difference between the positive voltage (Vp) and the negative voltage (V_N) is defined as hysteresis voltage (V_H) (see Fig. 2).

The CD4093B types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M, MT, M96, and NSR suffixes), and 14-lead thin shrink small-outline packages (PW and PWR suffixes).

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE, (VDD)

PACKAGE THERMAL IMPEDANCE, θ_{JA} (See Note 1):

DEVICE DISSIPATION PER OUTPUT TRANSISTOR

LEAD TEMPERATURE (DURING SOLDERING):

E package

NS package

DC INPUT CURRENT, ANY ONE INPUT

M package

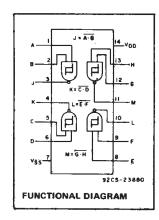
NOTE 1: Package thermal impedance is calculated in accordance with JESD 51-7.

Features:

- Schmitt-trigger action on each input with no external components
- Hysteresis voltage typically 0.9 V at V_{DD} = 5 V and 2.3 V at V_{DD} = 10 V
- Noise immunity greater than 50%.
- No limit on input rise and fall times
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range, 100 nA at 18 V and 25°C
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

.....±10mA

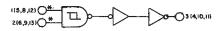
80°C/W


86°C/W

.. 76°C/W

Applications:

- Wave and pulse shapers
- High-noise-environment systems
- Monostable multivibrators
- Astable multivibrators
- INAND logic


Voltages referenced to V_{SS} Terminal)-0.5V to +20V

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

CHARACTERISTIC	MIN.	MAX.	UNITS
Supply Voltage Range (T _A = Full Package			
Temp. Range)	3	18	V

ALL INPUTS PROTECTED BY PROTECTION NETWORK

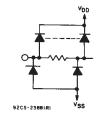
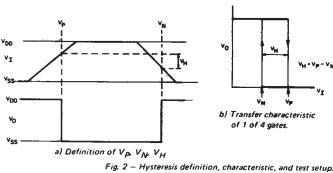
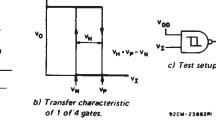




Fig. 1 - Logic diagram-1 of 4 Schmitt triggers.

DRIVER LOAD OUT PUT CHARING TERISTEC INPUT

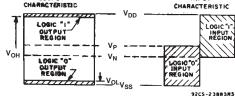
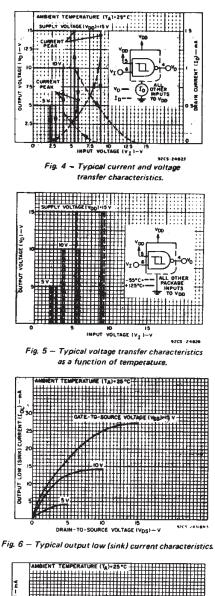


Fig. 3 - Input and output characteristics.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



1

CD4093B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER- ISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)						UNITS	
	٧o	VIN	VDD	1997 - 1997 1997 - 1997					+25]
	(V)	. (V)	(V)	-55	-40	+85	+125	MIN.	TYP.	MAX.]
Quiescent Device	-	0,5	5	[1	· 1	30	- 30	-	0.02	1	
Current, IDD	_	0,10	10	2	2	60	60	-	0.02	2	μΑ
Max:		0,15	15	4	4	120	120	-	0.02	-4	
		0,20	20	20	20	600	600	. .	0.04	20	1
Positive Trigger	-	а	5	2.2	2.2	2.2	2.2	2.2	2.9		
Threshold Voltage	-	· a	· 10	4.6	4.6	4.6	4.6	4.6	. 5.9		
Vp Min.	-	а	15	6.8	6.8	6.8	6.8	6.8	8.8		
	-	b	5	2.6	2.6	2.6	2.6	2.6	3.3	-	V
	-	b ·	10	5.6	5.6	5.6	5.6	_ 5.6	7.	-	1
	-	b	15	6.3	6.3	6.3	6.3	6.3	9.4	-	1
Vp Max.	·	a	5	3.6	3.6	3.6	3.6	-	2.9	3.6	
	- <u>-</u>	a	10	7.1	7.1	7.1	.7.1		5.9	7.1	1
		a	15	10.8	10.8	10.8	10.8		8.8	10.8	
	-	b.	5	4	4	4	4	_	3.3	4	
	_	b	10	8.2	8.2	8.2	8.2	-	7	8.2	1
	-	b	15	12.7	12.7	12.7	12.7	-	9.4	12.7	1
Negative Trigger		а	5	0.9	0.9	0.9	0.9	0.9	1.9	-	
Threshold Voltage	-	а	10	2.5	2.5	2.5	2.5	2.5	3.9	-	
V _N Min.		а	15	4	4	4	4	4	5.8	~ .	v
	-	b	5	1.4	1.4	1.4	1,4	1.4	2.3		. *
	-	b	10	3.4	3.4	3.4	3.4	3.4	5.1		
	-	b	15	4.8	4.8	4.8	4.8	4.8	7,3		
V _N Max.	- 1	a	5	2.8	2.8	2.8	2.8		1.9	2.8	• • • • • •
, Manage	-	a	10	5.2	5.2	5.2	5.2	_	3.9	5.2	
	-	а	15	7.4	7.4	7.4	7.4	-	5.8	7.4	
		b	5	3.2	3.2	3.2	3.2	 	2.3	3.2	V
	: -	b	10	6.6	6.6	6.6	6.6	- 	5.1	6.6	
1	-	b	15	9.6	9.6	9.6	9.6		7.3	9.6	
lysteresis Voltage	-	a	5	0.3	0.3	0.3	0.3	0.3	0.9	_	
V _H Min.	-	a	10	1.2	1.2	1.2	1.2	1.2	2.3	-	
	-	а	15	1.6	1.6	1.6	1.6	1.6	3.5	_	
		ь	5	0.3	0.3	0.3	0.3	0.3	0.9		V
	-	ь	10	1.2	1.2	1.2	1.2	1.2	2.3	_	
-	-	ь	15	1.6	1.6	1.6	1.6	1.6	3.5	_	
V., May	_	a	5	1.6	1.6	1.6	1.6	_	0.9	1.6	
V _H Max.		a	10	3.4	3.4	3.4	3.4	_	2.3	3.4	
	-	a	15	5	5	5	5	-	3.5	5	
		Ъ	5	1.6	1.6	1.6	1.6		0.9	1.6	V
L. L	<u> </u>	Ь	10	3.4	3.4	3.4	3.4		2.3	3.4	
		b :	15	5	5	5	- 5	- 2.	3,5	5	

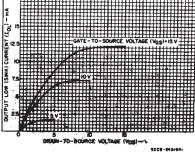


Fig 7 - Minimum output low (sink) current characteristics.

Input on terminals 1,5,8,12 or 2,6,9,13; other inputs to V_{DD}.

b Input on terminals 1 and 2, 5 and 6,8 and 9, or 12 and 13; other inputs to VDD-

STATIC ELECTRICAL CHARACTERISTICS (CONT'D)

CHARACTER- ISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)						UNITS	
	Vo	VIN	VDD)		<u> </u>	[·	+25			1
	(V)	(V)	.(V)	-55	40	+85	+125	MIN.	TYP.	MAX.	1
Output Low (Sink)	0.4	0.5	5	0.64	0.61	0.42	0.36	0.51	1	-	mA
Current, IOL Min.	0.5	0,10	10	1.6	1.5	1.1 -	0.9	1.3	2.6	-	
	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	- 1	
Output High (Source) Current, I _{OH} Min.	4.6	0,5	5	-0.64	-0.61	0.42	-0.36	-0.51	-1	-	
	2.5	0,5	5	<u>,</u> −2	-1.8	-1.3	-1.15	-1.6	-3.2	-	
	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6		
	13.5	0,15	15	-4.2	4	-2.8	-2.4	-3.4	6.8	. –	
Output Voltage	-	0,5	5	0.05				_ ·	0	0.05	:
Low Level, V _{OL} Max.	-	0,10	10			0.05		. –	. 0	0.05	
		0,15	15	0.05				, - -	0	0.05	v
Output Voltage High Level, V _{OH} Min.	-	0,5	5	4.95 4.95 5 -						-	-
	. 1	0,10	10	9.95				9.95	10	- 1	
	-	0,15	15	14.95 14.95 -				-	7		
Input Current, I _{IN} Max.	+	0,18	18	±0.1	±0.1	±1	±1	_	±10-5	±0.1	μА

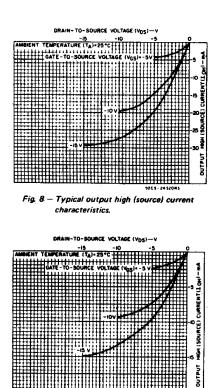


Fig. 9 – Minimum output high (source) current

characteristics.

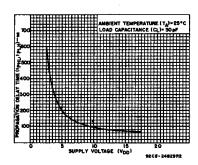
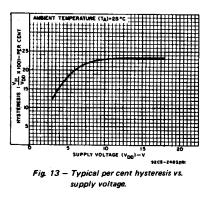



Fig. 10 - Typical propagation delay time vs. supply voltage.

DYNAMIC ELECTRICAL CHARACTERISTICS At $T_A = 25^{\circ}C$; Input t_r , $t_f = 20 \text{ ns}$, $C_L = 50 \text{ pF}$, $R_L = 200 k\Omega$

CHARACTERISTIC	TEST CONDI	LIN			
CHARACTERISTIC			TYP.	MAX.	
Propagation Delay Time:		5	190	380	1
tPHL [,]		10	90	180	ns
<u>т</u> РLН		15	65	130	
		5	100	200	
Transition Time,t _{THL} , ^t TLH		10	50	100	ns
	· · · ·	15	40	80	
Input Capacitance, CIN	Any Input		5	7.5	pF.

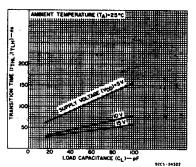


Fig. 11 - Typical transition time vs. load capacitance.

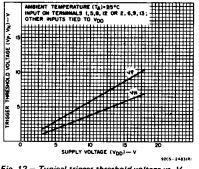
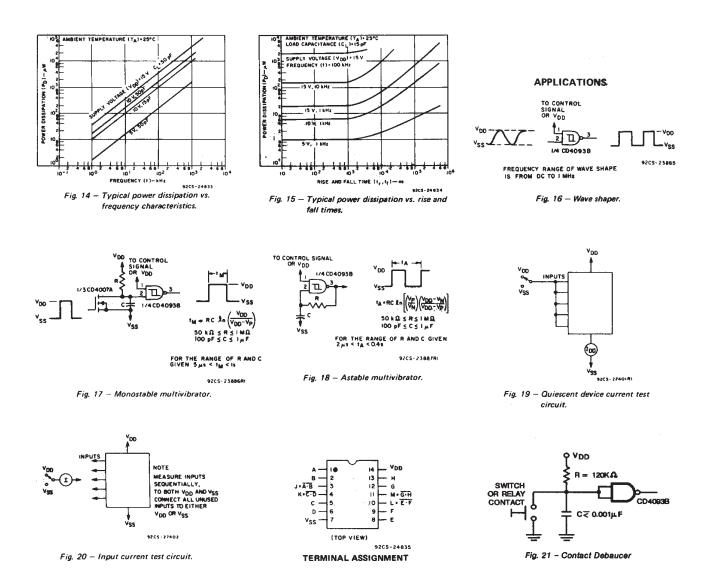



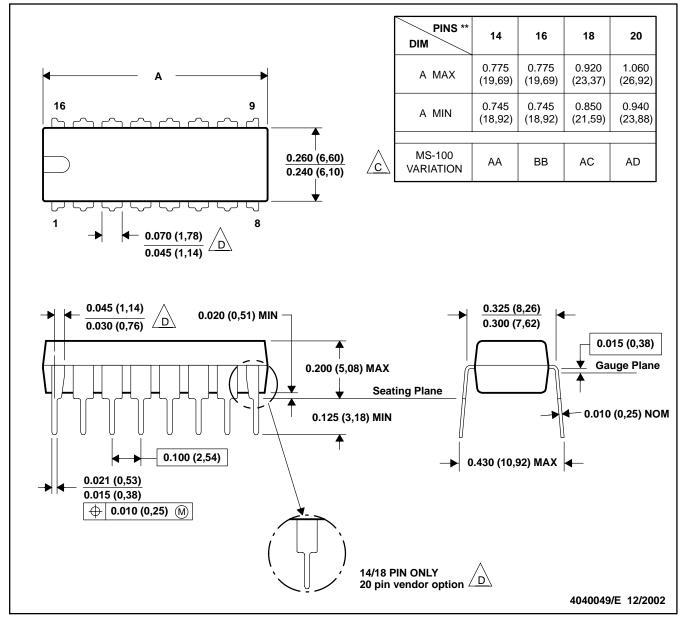
Fig. 12 – Typical trigger threshold voltage vs. V_{DD}

CD4093B Types

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

MPDI002C - JANUARY 1995 - REVISED DECEMBER 20002

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

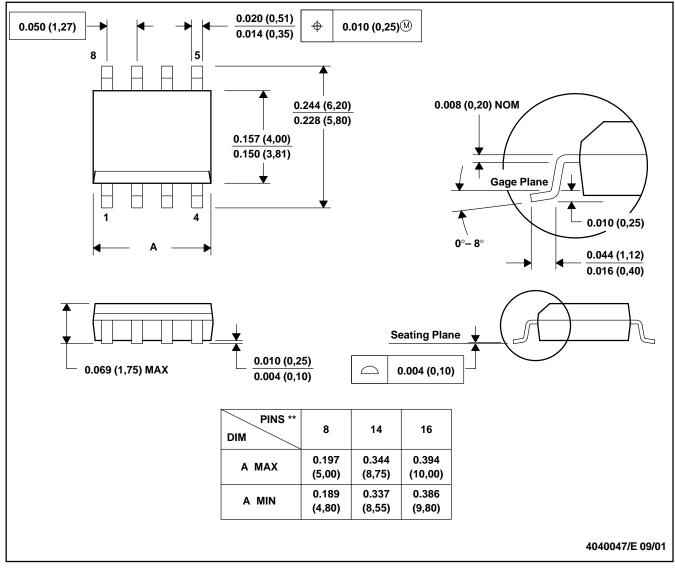
NOTES: A. All linear dimensions are in inches (millimeters).

/д.

B. This drawing is subject to change without notice.

/C Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.



MECHANICAL DATA

MSOI002B - JANUARY 1995 - REVISED SEPTEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

D (R-PDSO-G**) 8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

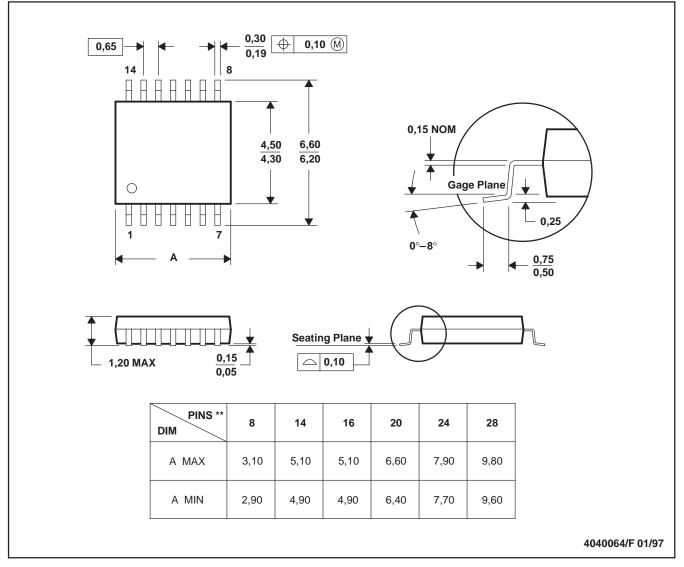
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated