

Features

- Single chip USB 2.0 to 10/100M Fast Ethernet controller
- Single chip USB 2.0 to RMII, support HomePNA and HomePlug PHY
- Single chip USB 2.0 to Reverse-RMII, supports glueless MAC-to-MAC connections

USB Device Interface

- Integrates on-chip USB 2.0 transceiver and SIE compliant to USB Spec 1.1 and 2.0
- Supports USB Full and High Speed modes with Bus-Power or Self-Power capability
- Supports 4 endpoints on USB interface
- Supports AutoDetach power saving. Detach from USB host when Ethernet cable is unplugged
- High performance packet transfer rate over USB bus using proprietary burst transfer mechanism (US Patent Approval)

Fast Ethernet Controller

- Integrates 10/100Mbps Fast Ethernet MAC/PHY
- IEEE 802.3 10BASE-T/100BASE-TX compatible
- IEEE 802.3 100BASE-FX compatible
- Supports twisted pair crossover detection and auto-correction (HP Auto-MDIX)
- Embedded SRAM for RX/TX packet buffering
- Supports IPv4/ IPv6 packet Checksum Offload Engine(COE) to reduce CPU loading, including IPv4 IP/TCP/UDP/ICMP/IGMP & IPv6 TCP/UDP/ICMPv6 checksum check & generation
- Supports full duplex operation with IEEE 802.3x flow control and half duplex operation with back-pressure flow control
- Supports 2 VLAN ID filtering, received VLAN Tag (4 bytes) can be stripped off or preserved
- PHY loop-back diagnostic capability
- Supports multiple unicast MAC destination address filter

Document No: AX88772C/V1.31/04/11/16

Support Wake-on-LAN Function

- Supports Suspend Mode and Remote Wakeup via Link-change, Magic packet, MS wakeup frame and external wakeup pin
- Supports Protocol Offload (ARP & NS) for Windows 7 Networking Power Management
- Optional PHY power down during Suspend Mode
- Supports 32 MS Wakeup Patterns
- Supports Wakeup packet indication
- Supports Receive Filter Wakeup

Versatile External Media Interface

- Optional RMII interface in MAC mode allows AX88772C to work with HomePNA and HomePlug PHY
- Optional Reverse-RMII interface in PHY mode allows AX88772C to support glueless MAC-to-MAC connections

Advanced Power Management Features

- Supports dynamic power management to reduce power dissipation during idle or light traffic
- Supports very low power Wake-on-LAN (WOL) mode when the system enters suspend mode and waits for network events to wake it up.
- Supports 256/512 bytes (93c56/93c66) of serial EEPROM (for storing USB Descriptors)
- Supports automatic loading of Ethernet ID, USB Descriptors and Adapter Configuration from EEPROM after power-on initialization
- Integrates on-chip voltage regulator and only requires a single 3.3V power supply
- Single 25MHz clock input from either crystal or oscillator source
- Integrates on-chip power-on reset circuit
- Small form factor with 64-pin LQFP RoHS compliant package
- ◆ Operating commercial temperature range 0°C to 70°C

Released Date: 04/11/2016

Target Applications

PC/Internet

Consumer Electronics

Figure 1 : Target Applications

Typical System Block Diagrams

Hosted by USB to operate with internal Ethernet PHY only

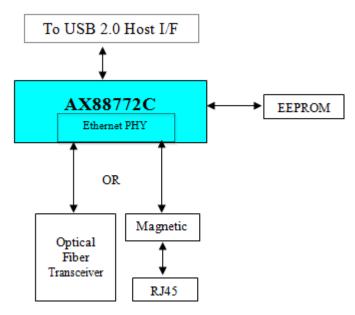


Figure 2 : USB 2.0 to LAN Adaptor (MAC mode)

• Hosted by USB to operate with either internal Ethernet PHY or RMII (in MAC mode)

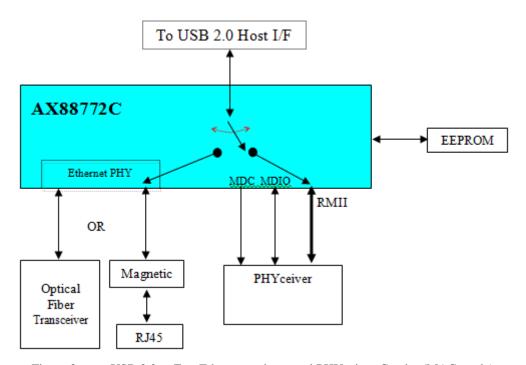
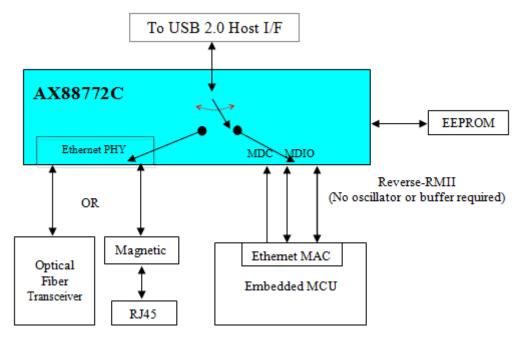



Figure 3 : USB 2.0 to Fast Ethernet and external PHYceiver Combo (MAC mode)

Hosted by USB to operate with either internal Ethernet PHY (in MAC mode) or **Reverse-RMII (in PHY mode)**

: Bridging Embedded MCU to USB 2.0 Host Interface (PHY mode) Figure 4

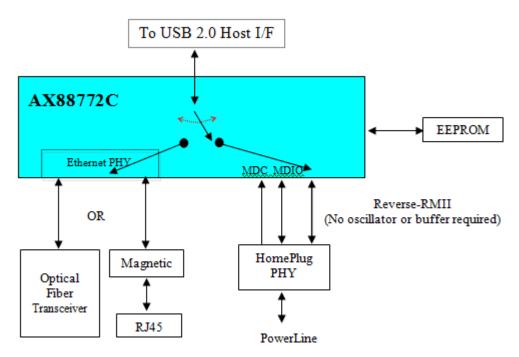


Figure 5 : USB 2.0 to HomePlug Adaptor (PHY mode)

Copyright © 2013-2016 ASIX Electronics Corporation. All rights reserved.

DISCLAIMER

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of ASIX. ASIX may make changes to the product specifications and descriptions in this document at any time, without notice.

ASIX provides this document "as is" without warranty of any kind, either expressed or implied, including without limitation warranties of merchantability, fitness for a particular purpose, and non-infringement.

Designers must not rely on the absence or characteristics of any features or registers marked "reserved", "undefined" or "NC". ASIX reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Always contact ASIX to get the latest document before starting a design of ASIX products.

TRADEMARKS

ASIX, the ASIX logo are registered trademarks of ASIX Electronics Corporation. All other trademarks are the property of their respective owners.

Table of Contents

I	INTRO	ODUCTION	9
	1.1 G	ENERAL DESCRIPTION	9
		LOCK DIAGRAM	
		NOUT DIAGRAM	
2	SIGN	AL DESCRIPTION	11
	2.1 Pi	NOUT DESCRIPTION	11
		ARDWARE SETTING FOR OPERATION MODE AND MULTI-FUNCTION PINS	
3		TION DESCRIPTION	
•		SB Core and Interface	
		SB CORE AND INTERFACE	
		IAC CORE HECKSUM OFFLOAD ENGINE (COE)	
		PERATION MODE	
		FATION MODE TATION MANAGEMENT (STA)	
		EMORY ARBITER	
		SB TO ETHERNET BRIDGE	
	3.8.1	Ethernet/USB Frame Format Bridge	
		ERIAL EEPROM LOADER	
		ENERAL PURPOSE I/O	
		LOCK GENERATION	
		ESET GENERATION	
		OLTAGE REGULATOR	
4		AL EEPROM MEMORY MAP	
•			
		ETAILED DESCRIPTION	
		ITERNAL ROM DEFAULT SETTINGS	
	4.2.1	Internal ROM Description	
	4.2.2	External EEPROM Description	
5		CONFIGURATION STRUCTURE	
		SB Configuration	
		SB Interface	33
	5.3 U	SB ENDPOINTS	33
6	ELEC	TRICAL SPECIFICATIONS	34
	6.1 D	C Characteristics	34
	6.1.1	Absolute Maximum Ratings	34
	6.1.2	Recommended Operating Condition	34
	6.1.3	Leakage Current and Capacitance	35
	6.1.4	DC Characteristics of 3.3V I/O Pins	35
	6.1.5	DC Characteristics of 3.3V with 5V Tolerance I/O Pins	35
	6.1.6	DC Characteristics of Voltage Regulator	36
	6.1.7	DC Characteristics of Fiber Interface	36
	6.2 T	HERMAL CHARACTERISTICS	
		OWER CONSUMPTION	
		OWER-UP SEQUENCE	
		C TIMING CHARACTERISTICS	
	6.5.1	Clock Timing	
	6.5.2	Reset Timing	
	6.5.3	Serial EEPROM Timing	
	6.5.4	Station Management Timing	
	6.5.5	RMII / Reverse-RMII Timing	
	6.5.6	10/100M Ethernet PHY Interface Timing	
	•	J	

	6.5.7	USB Transceiver Interface Timing	44
7	PACKA	AGE INFORMATION	46
	7.1 AX	X88772C 64-pin LQFP package	46
8	ORDEI	RING INFORMATION	47
9	REVIS	SION HISTORY	48
A]	PPENDIX	A. DEFAULT WAKE-ON-LAN (WOL) READY MODE	49
A 1	PPENDIX	R ETHERNET PHY POWER AND RESET CONTROL	52.

List of Figures

FIGURE 1	: TARGET APPLICATIONS	2
FIGURE 2	: USB 2.0 TO LAN ADAPTOR (MAC MODE)	3
FIGURE 3	: USB 2.0 TO FAST ETHERNET AND EXTERNAL PHYCEIVER COMBO (MAC MODE)	3
FIGURE 4	: BRIDGING EMBEDDED MCU TO USB 2.0 HOST INTERFACE (PHY MODE)	4
FIGURE 5	: USB 2.0 TO HOMEPLUG ADAPTOR (PHY MODE)	
FIGURE 6	: BLOCK DIAGRAM	
FIGURE 7	: PINOUT DIAGRAM	. 10
FIGURE 8	: INTERNAL DATA PATH DIAGRAM OF 10/100M ETHERNET PHY AND RMII/REVERSE-RMII INTERFACES	. 16
FIGURE 9	: RMII TO EXTERNAL PHY CHIP WITH 50MHZ OSC	. 18
FIGURE 10	: RMII INTERFACE TO EXTERNAL PHY CHIP	
FIGURE 11	: REVERSE-RMII TO EXTERNAL MAC DEVICE WITH 50MHz OSC	. 19
FIGURE 12	: REVERSE-RMII INTERFACE TO EXTERNAL MAC DEVICE	. 19
FIGURE 13	: INTERNAL CONTROL MUX OF STATION MANAGEMENT INTERFACE IN MAC MODE	
FIGURE 14	: INTERNAL CONTROL MUX OF STATION MANAGEMENT INTERFACE IN PHY MODE	. 21
FIGURE 15	: ONE EXTERNAL 1M OHM RESISTOR ON 25MHZ CRYSTAL OSCILLATOR IS NECESSARY	. 24
FIGURE 16	: WATER LEVEL SETTING FOR FLOW CONTROL	. 28
FIGURE 17	: ETHERNET PHY OSCILLATOR/PLL BLOCK DIAGRAM	. 52
FIGURE 18	: ETHERNET PHY POWER-UP & RESET TIMING DIAGRAM	. 53
	List of Tables	
TABLE 1	: PINOUT DESCRIPTION	
TABLE 2	: MFA_3 ~ MFA_0 PIN CONFIGURATION	. 14
TABLE 3	: PHY_ID DEFINITION SOURCE	
Table 4	: THE EXTERNAL 25MHZ CRYSTAL UNITS SPECIFICATIONS	. 23
TABLE 5	: SERIAL EEPROM MEMORY MAP	
TABLE 6	: INTERNAL ROM MEMORY MAP	
Table 7	: INTERNAL ROM DESCRIPTION	
TABLE 8	: POWER CONSUMPTION	
TABLE 9	: REMOTE WAKEUP TRUTH TABLE	. 50

1 Introduction

1.1 General Description

The AX88772C USB 2.0 to 10/100M Fast Ethernet controller with Microsoft AOAC(Always On Always Connected) support is a high performance and highly integrated ASIC which enables a low cost, small form factor, and simple plug-and-play Fast Ethernet network connection capability for desktops, notebook PCs, Ultrabooks, cradles/port replicators/docking stations, game consoles, digital-home appliances, and any embedded system using a standard USB port.

The AX88772C can be used in any embedded system with a USB host microcontroller requiring a twisted pair physical network connection. Featuring a USB interface (compliant with USB specification V2.0 and V1.1) to communicate with a USB Host Controller, the AX88772C also integrates on-chip Ethernet MAC and PHY (IEEE802.3 and IEEE802.3u compatible) and embedded memory. Additionally, the AX88772C needs only a single 25MHz crystal to drive both the USB and Ethernet PHYs.

The AX88772C offers a wide array of features including IPv4/IPv6 checksum offload engine, Protocol Offload(ARP & NS), HP Auto-MDIX, and IEEE 802.3x and back-pressure flow control. The AX88772C also offers multiple power management Wake-on-LAN features, including Magic Packet, Microsoft Wakeup Frame, Link Status Change, 32 Microsoft Wakeup Patterns and Wakeup Packet Indication that allows the AOAC platform to enter a low-power "Connected Standby" state and wake on a desired network pattern.

The AX88772C provides an optional Multi-Function-Bus portion A and B (MFA and MFB) for external PHY or external MAC for different application purposes. The MFA/MFB can be a reduce-media-independent interface (RMII) for implementing HomePlug, HomePNA, etc. functions. The MFA/MFB can also be a Reverse Reduced-MII (Reverse-RMII) for glueless MAC-to-MAC connections to any MCU with Ethernet MAC RMII interface. In addition, the MFA/MFB can be configured as general purpose I/O.

1.2 Block Diagram

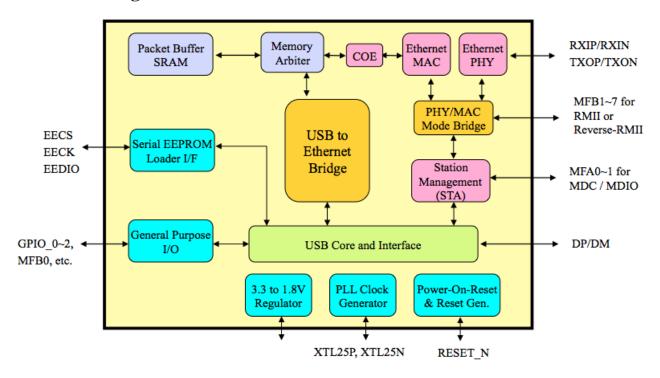


Figure 6 : Block Diagram

1.3 Pinout Diagram

• 64-pin LQFP package

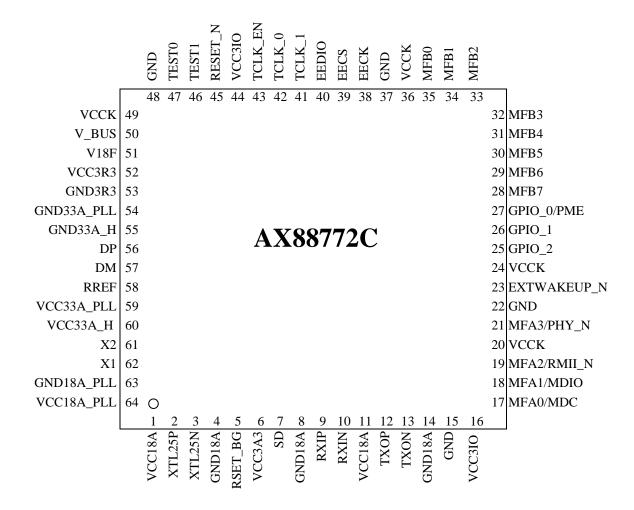


Figure 7 : Pinout Diagram

2 Signal Description

The following abbreviations apply to the following pin description table.

I18	Input, 1.8V	ΑI	Analog Input
I3	Input, 3.3V	AO	Analog Output
I5	Input, 3.3V with 5V tolerant	AB	Analog Bi-directional I/O
O3	Output, 3.3V	PU	Internal Pull Up (75K)
B5	Bi-directional I/O, 3.3V with 5V tolerant	PD	Internal Pull Down (75K)
P	Power Pin	\mathbf{S}	Schmitt Trigger
		Т	Tri-stateable

Note: Every output or bi-directional I/O pin is 8mA driving strength.

2.1 Pinout Description

DP DM	AB		Pin Description USB Interface		
	AB		USD IIICITACE		
DM		DP AB 56 USB 2.0 data positive pin.			
DM AB 57 USB 2.0 data negative pin.					
V_BUS I	5/PD/S	50	VBUS pin input. Please connect to USB bus power.		
RREF	AI	58	For USB PHY's internal biasing. Please connect to analog GND through a		
			resistor (12.1Kohm ±1%).		
•			Serial EEPROM Interface		
EECK I	B5/PD/	38	EEPROM Clock. EECK is an output clock to EEPROM to provide timing		
	T		reference for the transfer of EECS, and EEDIO signals. EECK only drive		
			high / low when access EEPROM otherwise keep at tri-state and internal		
			pull-down.		
EECS I	B5/PD/	39	EEPROM Chip Select. EECS is asserted high synchronously with respect to		
	T		rising edge of EECK as chip select signal. EECS only drive high / low when		
			access EEPROM otherwise keep at tri-state and internal pull-down.		
EEDIO I	B5/PU/	40	EEPROM Data In. EEDIO is the serial output data to EEPROM's data input		
	T		pin and is synchronous with respect to the rising edge of EECK. EEDIO		
			only drive high / low when access EEPROM otherwise keep at tri-state and		
			internal pull-up.		
			Ethernet PHY Interface		
XTL25P	I18	2	25MHz ± 0.005% crystal or oscillator clock input. This clock is needed for		
			the embedded 10/100M Ethernet PHY to operate.		
XTL25N	O18	3	25MHz crystal or oscillator clock output.		
RXIP	AB	9	Receive data input positive pin for both 10BASE-T and 100BASE-TX.		
RXIN	AB	10	Receive data input negative pin for both 10BASE-T and 100BASE-TX.		
TXOP	AB	12	Transmit data output positive pin for both 10BASE-T and 100 BASE-TX		
TXON	AB	13	Transmit data output negative pin for both 10BASE-T and 100 BASE-TX		
RSET_BG	AO	5	For Ethernet PHY's internal biasing. Please connect to GND through a		
			12.1Kohm ±1% resistor.		
			Misc. Pins		
RESET_N	I5/PU	/S 45	Chip reset input. Active low. This is the external reset source used to reset		
			this chip. This input feeds to the internal power-on reset circuitry, which		
			provides the main reset source of this chip. After completing reset,		
			EEPROM data will be loaded automatically.		
EXTWAKEUP_N	I5/PU	/S 23	Remote-wakeup trigger from external pin. EXTWAKEUP_N should be		
			asserted low for more than 2 cycles of 25MHz clock to be effective.		
GPIO_2	O_2 B5/PD 25		General Purpose Input/ Output Pin 2.		
GPIO_1	B5/PI) 26	General Purpose Input/ Output Pin 1. This pin is default as input pin after		
			power-on reset. This pin is also for Default WOL Ready Mode setting;		
			please refer to section 2.2 Settings.		

GPIO_0/PME	B5/PD	27	General Purpose Input/ Output Pin 0 or PME (Power Management Event).
Of IO_0/1 WIL	D5/1D	21	This pin is default as input pin after power-on reset. GPIO_0 also can be
			defined as PME output to indicate wake up event detected. Please refer to
			section 2.2 Settings.
		28	This is a multi-function pin. Please refer to section 2.2 Settings.
MFB7	B5/PU	20	MFB7:
WII D7	I5		RMII : RXD0
	15		Reverse_RMII: TXD0
		29	This is a multi-function pin. Please refer to section 2.2 Settings.
MFB6	B5/PU		MFB6:
	15		RMII : RXD1
	15		Reverse_RMII: TXD1
		30	This is a multi-function pin. Please refer to section 2.2 Settings.
MFB5/	B5/PU		MFB5:
REF50	B5		When RMII enable, The REF50 in/out direction is determined by EEPROM
			Flag [1] setting. Please refer to section 2.2 Settings.
MFB4	B5/PU	31	This is a multi-function pin. Please refer to section 2.2 Settings.
	O3		RMII : TXD0
	O3		Reverse_RMII: RXD0
MFB3	B5/PU	32	This is a multi-function pin. Please refer to section 2.2 Settings.
	O3		RMII : TXD1
	O3		Reverse_RMII: RXD1
MFB2	B5/PU	33	This is a multi-function pin. Please refer to section 2.2 Settings.
	O3		RMII : TXEN
	O3		Reverse_RMII : CRSDV
MFB1	B5/PU	34	This is a multi-function pin. Please refer to section 2.2 Settings.
	I5		RMII : CRSDV
	I5		Reverse_RMII : TXEN
MFB0	B5/PU	35	This is a GPIO pin. Please refer to section 2.2 Settings.
MFA3/	O3	21	It is a multi-function pin. The default is USB Speed indicator. When USB
PHY_N	I5/PU		bus is in Full speed, this pin will tri-state continuously. When USB bus is in
	10,10		High speed, this pin drives low continuously. This pin tri-state and drive low
			in turn (blinking) to indicate TX data transfer going on whenever the host
			controller sends bulk out data transfer.
			MFB1~7 bus is determined by setting of this input pin when MFA2 sets 0:
			0: Reverse_RMII (PHY mode).
			1: RMII (MAC mode).
			Please refer to PIN configuration of MFA and MFB in section 2.2 Settings.
MFA2/	O3	19	It is a multi-function pin. The default is Link status LED indicator.
RMII_N	I5/PU		This pin drives low continuously when the Ethernet link is up and drives low
			and high in turn (blinking) when Ethernet PHY is in receiving or
			transmitting state.
			MFB1~7 function is determined by setting of this input pin:
	1		0: Reverse_RMII/RMII .
	1		1: MFB bus as GPIO function.
			Please refer to PIN configuration of MFA and MFB in section 2.2 Settings.
MFA1/	O3	18	It is a multi-function pin. The default is Ethernet speed LED indicator.
MDIO	B5/PU		This pin drives low when the Ethernet PHY is in 100BASE-TX mode and
	1		drives high when in 10BASE-T mode.
i			This pin can perform as MDIO when enabling Reverse_RMII/RMII.

MFA0/	O3	17	It is a multi-function pin. The default is Full Duplex and collision detected				
MDC			LED inc				
			This pin drives low when the Ethernet PHY is in full-duplex mode				
			drives high when in half duplex mode. When in half duplex mode a				
			Ethernet PHY detects collision, it will be driven low (or blinking).				
			This pin can perform as MDC when enabling Reverse_RMII/RMII:				
	O3		RMII : Output.				
	I5/PU		Reverse	rse_RMII : Input.			
SD	I	7		gnal detected			
			Twisted	pair operation: Please connect to GND directly or through a			
			resistor.				
				peration: Please connect to the fiber transceiver signal detect output			
			pin.				
				efer to Section 6.1.7 for the detailed SD signal DC Characteristics			
			spec.				
TEST0	I5/S	47		. For normal operation, user should connect to ground.			
TEST1	I5/S	46		. For normal operation, user should connect to ground.			
X1	I3	62		. For normal operation, user should connect to ground.			
X2	O3	61		. No connection			
TCLK_EN	I5/PD/S			. For normal operation, user should keep this pin NC.			
TCLK_0	I5/PD	42	Test pin. For normal operation, user should keep this pin NC.				
TCLK_1	I5/PD	41	Test pin. For normal operation, user should keep this pin NC.				
	1			On-chip Regulator Pins			
VCC3R3	P	52		wer supply to on-chip 3.3V to 1.8V voltage regulator.			
GND3R3	P	53		pin of on-chip 3.3V to 1.8V voltage regulator.			
V18F	P	51		ltage output of on-chip 3.3V to 1.8V voltage regulator.			
	1			ower and Ground Pins			
VCCK	P		, 36, 49	Digital Core Power. 1.8V.			
VCC3IO	P		, 44	Digital I/O Power. 3.3V.			
GND	P		, 37, 48	Digital Ground.			
VCC33A_H	P		50	Analog Power for USB transceiver. 3.3V.			
GND33A_H	P		Analog Ground for USB transceiver.				
VCC33A_PLL	P		59 Analog Power for USB PLL. 3.3V.				
GND33A_PLL	P		54 Analog Ground for USB PLL.				
VCC3A3	P		6 Analog Power for Ethernet PHY bandgap. 3.3V.				
VCC18A	P	1,	11 Analog Power for Ethernet PHY and 25MHz crystal oscillator. 1.8V.				
GND18A	P	4, 8	8, 14 Analog Ground for Ethernet PHY and 25MHz crystal oscillator.				
VCC18A_PLL	P		64 Analog Power for USB PLL. 1.8V.				
GND18A_PLL	P	(63 Analog Ground for USB PLL.				

Table 1 : Pinout Description

2.2 Hardware Setting For Operation Mode and Multi-Function Pins

The following hardware settings define the desired function or interface modes of operation for some multi-function pins. The logic level shown on setting pin below is loaded from the chip I/O pins during power on reset based on the setting of the pin's pulled-up (as logic '1') or pulled-down (as logic '0') resister on the schematic.

Chip Operation Mode setting :

Pin# 19, Pin #21	Opera	ation Modes	Remarks
1x (default)	MAC mode	Internal PHY	The Chip Operation Mode is determined by Pin# 19
01	MAC mode	RMII	(MFA2/RMII_N) and Pin #21 (MFA3/PHY_N) value of
00	PHY mode	Reverse-RMII	AX88772C, which is called hardware setting.

• EECK pin: USB force to Full Speed mode:

EECK	Description				
0	Normal operation (default).				
1 USB force to Full Speed mode. External pull-up resistor must be 4.7Kohm.					

• GPIO_1 pin: Determines whether this chip will go to Default WOL Ready Mode after power on reset. The WOL stands for Wake-On-LAN.

GPIO_1	D_1 Description				
0	0 Normal operation mode (default, see Note 1).				
1 Enable Default WOL Ready Mode. Notice that the external pulled-up resistor must be 4.7Kohm					
	For more details, please refer to APPENDIX A. Default Wake-On-LAN (WOL) Ready Mode				

Note 1: This is the default with internal pulled-down resistor and doesn't need an external one.

• EEPROM Flag [12]: Defines the multi-function pin GPIO_0 / PME

GPIO_0 is a general purpose I/O normally controlled by vendor commands. Users can change this pin to operate as a PME (Power Management Event) for remote wake up purpose. Please refer to 4.1.2 Flag of bit 12 (PME_PIN).

 MFA_3 ~ MFA_0 pins: There are 4 multi-function pins for LED display purpose and as GPIO control by vendor command.

PIN Name	Default definition	Vendor Command	Vendor Command	RMII_N enable
		LED_MUX	VMFAIO	
MFA3	LED_USB indicater	Sel_LED3	MFAIO_3	-
MFA2	LED_Ethernet_LINK_Active	Sel_LED2	MFAIO_2	-
MFA1	LED_Ethernet_Speed	Sel_LED1	MFAIO_1	MDIO
MFA0	LED_Ethernet_Duplex_Collision	Sel_LED0	MFAIO_0	MDC

Table 2 : MFA_3 ~ MFA_0 pin configuration

• PIN configuration of MFA and MFB

Pin# 19 MFA2/RMII_N	Pin #21 MFA3/PHY_N	Description			
1: MFB7~MFB0 0: RMII	1: MAC Mode 0: PHY Mode	PIN Name	Function	Pin Type	
1	X	MFB0	MFBIO0	Bidirection, controlled by MFBIOEN0	
1	X	MFB1	MFBIO1	Bidirection, controlled by MFBIOEN1	
1	X	MFB2	MFBIO2	Bidirection, controlled by MFBIOEN2	
1	X	MFB3	MFBIO3	Bidirection, controlled by MFBIOEN3	
1	X	MFB4	MFBIO4	Bidirection, controlled by MFBIOEN4	
1	X	MFB5	MFBIO5	Bidirection, controlled by MFBIOEN5	
1	X	MFB6	MFBIO6	Bidirection, controlled by MFBIOEN6	
1	X	MFB7	MFBIO7	Bidirection, controlled by MFBIOEN7	
1	X	MFA0	Refer to MFA Configuration		
1	X	MFA1	Refer to MFA Configuration		
1	X	MFA2	Refer to MFA Configuration		
1	X	MFA3	Refer to MFA Configuration		
0	1	MFB0	MFBIO0	Bidirection, controlled by MFBIOEN0	
0	1	MFB1	CRSDV	Input	
0	1	MFB2	TXEN	Output	
0	1	MFB3	TXD1	Output	
0	1	MFB4	TXD0	Output	
0	1	MFB5	REF50	Input/Output control by EEPROM flag[1]	
0	1	MFB6	RXD1	Input	
0	1	MFB7	RXD0	Input	
0	1	MFA0	MDC	Output	
0	1	MFA1	MDIO	I/O	
0	0	MFB0	MFBIO0	Bidirection, controlled by MFBIOEN0	
0	0	MFB1	TXEN	Input	
0	0	MFB2	CRSDV	Output	
0	0	MFB3	RXD1	Output	
0	0	MFB4	RXD0	Output	
0	0	MFB5	REF50	Input/Output control by EEPROM flag[1]	
0	0	MFB6	TXD1	Input	
0	0	MFB7	TXD0	Input	
0	0	MFA0	MDC	Input	
0	0	MFA1	MDIO	I/O	

3 Function Description

3.1 USB Core and Interface

The USB core and interface contains a USB 2.0 transceiver, serial interface engine (SIE), USB bus protocol handshaking block, USB standard command, vendor command registers, logic for supporting bulk transfer, and an interrupt transfer, etc. The USB interface is used to communicate with a USB host controller and is compliant with USB specification V1.1 and V2.0.

3.2 10/100M Ethernet PHY

The 10/100M Fast Ethernet PHY is compliant with IEEE 802.3 and IEEE 802.3u standards. It contains an on-chip crystal oscillator, PLL-based clock multiplier, and a digital phase-locked loop for data/timing recovery. It provides over-sampling mixed-signal transmit drivers compliant with 10/100BASE-TX transmit wave shaping / slew rate control requirements. It has a robust mixed-signal loop adaptive equalizer for receiving signal recovery. It contains a baseline wander corrective block to compensate data dependent offset due to AC coupling transformers. It supports auto-negotiation and auto-MDIX functions.

3.3 MAC Core

The MAC core supports 802.3 and 802.3u MAC sub-layer functions, such as basic MAC frame receive and transmit, CRC checking and generation, filtering, forwarding, flow-control in full-duplex mode, and collision-detection and handling in half-duplex mode, etc. It provides a reduce-media-independent interface (RMII) for implementing Fast Ethernet and HomePNA functions.

The MAC core interfaces to external RMII/Reverse-RMII interfaces and the embedded 10/100M Ethernet PHY. The selection among the interfaces is done via setting Pin# 19 (MFA2/RMII_N) and Pin #21 (MFA3/PHY_N) of AX88772C package pinout during power on reset (see 2.2) and using the USB vendor command, Software Interface Selection register. Figure 8 shows the data path diagram of 10/100M Ethernet PHY and RMII/Reverse-RMII interfaces to MAC core.

Figure 8 : Internal Data path Diagram of 10/100M Ethernet PHY and RMII/Reverse-RMII Interfaces

3.4 Checksum Offload Engine (COE)

The Checksum Offload Engine (COE) supports IPv4, IPv6, layer 4 (TCP, UDP, ICMP, ICMPv6 and IGMP) header processing functions and real time checksum calculation in hardware

The COE supports the following features in layer 3:

- IP header parsing, including IPv4 and IPv6
- IPv6 extention header and routing header type 0 supported
- IPv4 header checksum check and generation (There is no checksum field in IPv6 header)
- Detecting on RX direction for IP packets with error header checksum

The COE supports the following features in layer 4:

- TCP and UDP checksum check and generation for non-fragmented packet
- ICMP, ICMPv6 and IGMP message checksum check and generation for non-fragmented packet
- Checksum error indication on RX direction for TCP/UDP/ICMP/ICMPv6/IGMP packets with error checksum

3.5 Operation Mode

For simple USB 2.0 to Ethernet applications, user can use the AX88772C, which operates with internal Ethernet PHY.

AX88772C supports following three operation modes: (Ref. 2.2 Hardware Setting For Operation Mode and Multi-Function Pins)

- 1. MAC mode
- 2. PHY mode

Below provides a detailed description for the three operation modes:

• In MAC mode, the AX88772C Ethernet block is configured as an Ethernet MAC. From a system application standpoint, AX88772C can be used as a USB 2.0 to LAN Adaptor (see Figure 2) or a USB 2.0 to Fast Ethernet and HomePNA Combo (see Figure 3).

In MAC mode, the AX88772C internal datapath can work with internal Ethernet PHY or RMII interface by setting Software Interface Selection register. Note that the PHY_ID for the internal Ethernet PHY and external one are defined in below Table 3. Please refer to below Figure 9, Figure 10 for RMII example.

• In PHY mode, the AX88772C Ethernet block is configured as an Ethernet PHY interface. In this case, an external microcontroller with Ethernet MAC can interface with AX88772C as if it were to interface with an Ethernet PHY chip, and AX88772C can act as a USB to Reverse-RMII bridge chip for the microcontroller to provide USB 2.0 device interface for some system applications (see Figure 4).

Please refer to below Figure 11, Figure 12 for Reverse-RMII example.

STA PHY_ID	MAC mode	PHY mode
Embedded Ethernet PHY	10h	10h
PHY_ID [4:0]		
External Media Interface	{Secondary PHY_ID	{Secondary PHY_ID [4:1], 0}
PHY_ID [4:0]	[4:0]}	

Note: The value of Secondary PHY_ID [4:0] is defined in EEPROM memory map 4.1.6

Table 3 : PHY_ID Definition Source

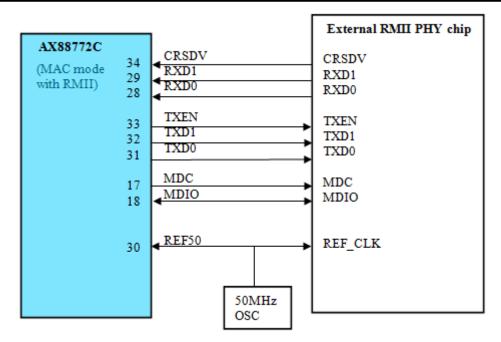


Figure 9 : RMII to External PHY chip with 50MHz OSC

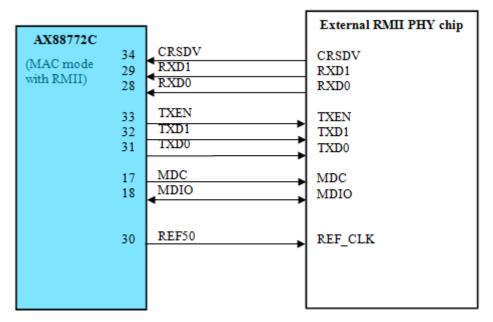


Figure 10 : RMII Interface to External PHY chip

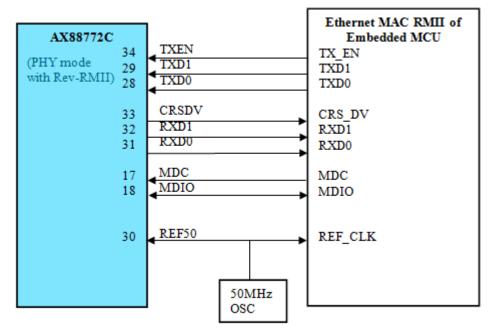


Figure 11 : Reverse-RMII to External MAC Device with 50MHz OSC

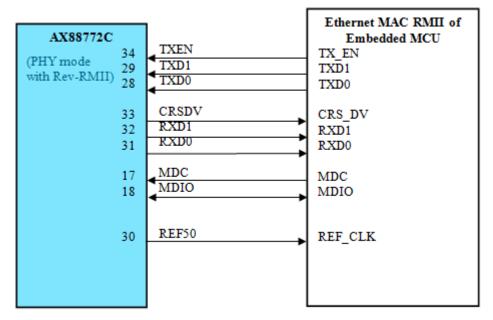


Figure 12 : Reverse-RMII Interface to External MAC Device

3.6 Station Management (STA)

The Station Management interface provides a simple, two-wire, serial interface to connect to a managed PHY device for the purpose of controlling the PHY and gathering status from the PHY. The Station Management interface allows communicating with multiple PHY devices at the same time by identifying the managed PHY with 5-bit, unique PHY_ID. The PHY ID of the embedded 10/100M Ethernet PHY is being pre-assigned to "1_0000".

The Figure 13 shows the internal control MUX of the Station Management interface when doing read in MAC operation mode, the "mdin" signal will be driven from the embedded 10/100M Ethernet PHY only if PHY ID matches with "1_0000", otherwise, it will always be driven from the external MDIO pin of the ASIC.

The Station Management unit also reports the basic PHY status when operating in PHY mode acting as a PHY role (see 0). For detailed register description, please refer to the Station Management Registers in PHY mode.

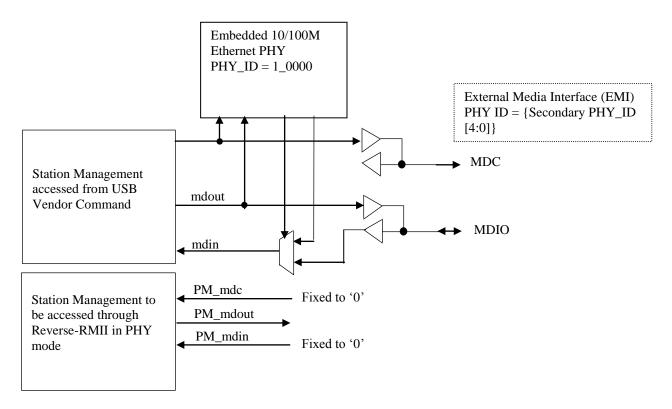


Figure 13 : Internal Control MUX of Station Management Interface in MAC mode

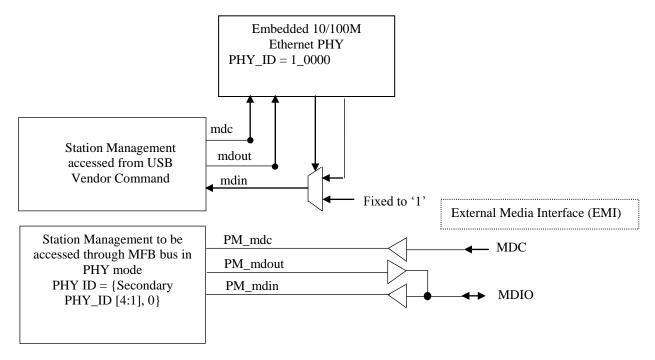
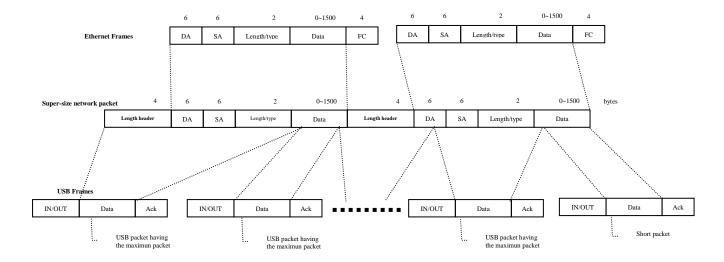


Figure 14 : Internal Control MUX of Station Management Interface in PHY mode

3.7 Memory Arbiter


The memory arbiter block is responsible for storing received MAC frames into on-chip SRAM (packet buffer) and then forwarding it to the USB bus upon request from the USB host via Bulk In transfer. It also monitors the packet buffer usage in full-duplex mode for triggering PAUSE frame (or in half-duplex mode to activate Backpressure jam signal) transmission out on TX direction. The memory arbiter block is also responsible for storing MAC frames received from the USB host via Bulk Out transfer and scheduling transmission out towards Ethernet network.

3.8 USB to Ethernet Bridge

The USB to Ethernet bridge block is responsible for converting Ethernet MAC frame into USB packets or vice-versa. This block supports proprietary burst transfer mechanism (US Patent Approval) to offload software burden and to offer very high packet transfer throughput over USB bus.

3.8.1 Ethernet/USB Frame Format Bridge

3.9 Serial EEPROM Loader

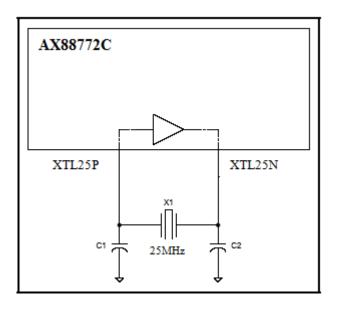
The serial EEPROM loader is responsible for reading configuration data automatically from the external serial EEPROM after power-on reset. If the content of EEPROM offset 0x00 (low byte of first word) is 0x00 or 0xFF, the Serial EEPROM Loader will not auto-load the EEPROM. If the content of EEPROM offset 0x18 (low byte of 18^{th} word) is not equal to $(0xFF - SUM [EEPROM offset 07H \sim 0EH])$. In that case, the chip internal default value will be used to configure the chip operation setting and to respond to USB commands, etc.

3.10 General Purpose I/O

There are 3 general-purpose I/O pins (named GPIO_0/1/2), 8 multi-function pins group B (named MFB0/1/2/3/4/5/6/7) and 4 multi-function pins group A (named MFA0/1/2/3) provided by this ASIC.

3.11 Clock Generation

The AX88772C integrates internal oscillator circuits for 25MHz, respectively, which allow the chip to operate cost effectively with just external 25MHz crystals. There are also three PLL circuits integrated in the chip to generate precise clocks.


The external 25MHz crystal or oscillator, via pins XTL25P/XTL25N, provides the reference clock to the other two internal PLL circuit to generate a free-run 100MHz clock source for the Reverse-RMII/RMII modes of AX88772C and a 125MHz clock source for the embedded Ethernet PHY use.

The AX88772C can provide REF50 (50MHz output) in Reverse-RMII/RMII modes. This output clock is derived from the internal 100MHz PLL circuit.

The external 25MHz Crystal spec is listed in below table. For more details on crystal timing, please refer to 6.5.1 Clock Timing and AX88772C demo board schematic reference.

Parameter	Symbol	Typical Value
Nominal Frequency	Fo	25.000000MHz
Oscillation Mode		Fundamental
Frequency Tolerance (@25°ℂ)		±30ppm
Frequency Stability Over Operating Temperature Range		±30ppm
Equivalent Series Resistance	ESR	70 Ohm max.
Load Capacitance	CL	20pF
Operation Temperature Range		0° C ~ +70°C, Commerical version
Aging		±3ppm/year

Table 4 : The external 25MHz Crystal Units specifications

For the 25MHz oscillator, its feedback resistor isn't integrated into the 25MHz oscillator, so it is necessary to add feedback resistor on external circuit.

To implement the external circuits of 25MHz crystal please refer to below. One external 1Mohm resistor on 25MHz crystal oscillator is required.

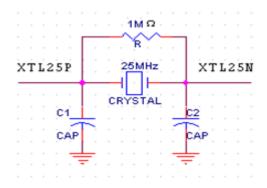


Figure 15 : One external 1M ohm resistor on 25MHz crystal oscillator is necessary

3.12 Reset Generation

The AX88772C integrates an internal power-on-reset circuit, which can simplify the external reset circuitry on PCB design. The power-on-reset circuit generates a reset pulse to reset system logic after 1.8V core power ramping up to 1.2V (typical threshold). The external hardware reset input pin, RESET_N, is fed directly to the input of the power-on-reset circuit and can also be used as additional hardware reset source to reset the system logic. For more details on RESET_N timing, please refer to 6.5.2 Reset Timing.

3.13 Voltage Regulator

The AX88772C contains an internal 3.3V to 1.8V low-dropout-voltage and low-standby-current voltage regulator. The internal regulator provides up to 150mA of driving current for the 1.8V core/analog power of the chip to satisfy the worst-case power consumption scenario. For more details on voltage regulator DC characteristic, please refer to 6.1.6 DC Characteristics of Voltage Regulator.

4 Serial EEPROM Memory Map

EEPROM OFFSET		HIGH BYTE		LOW BYTE	
00H		0x5A	0x15		
01H		I	Flag		
02H	Length of High-	Speed Device Descriptor (bytes)	EEPROM Of	fset of High-Speed Device Descriptor	
03H	Length of High-	Speed Configuration Descriptor (bytes)	EEPROM (Offset of High-Speed Configuration Descriptor	
04H]	MAC Address 1		MAC Address 0	
05H]	MAC Address 3		MAC Address 2	
06H		MAC Address 5		MAC Address 4	
07H	Lang	guage ID High Byte		Language ID Low Byte	
08H	Length of l	Manufacture String (bytes)	EEPRO	M Offset of Manufacture String	
09H	Length o	of Product String (bytes)	EEPROM Offset of Product String		
0AH	Length of S	erial Number String (bytes)	EEPROM Offset of Serial Number String		
0BH	Length of C	Configuration String (bytes)	EEPROM Offset of Configuration String		
0CH	Length of	Interface 0 String (bytes)	EEPROM Offset of Interface 0 String		
0DH	Length of l	Interface 1/0 String (bytes)	EEPROM Offset of Interface 1/0 String		
0EH	Length of l	Interface 1/1 String (bytes)	EEPROM Offset of Interface 1/1 String		
0FH	EtherPhyMode [2:0]	PHY Register Offset 1 for Interrupt Endpoint	100	PHY Register Offset 2 for Interrupt Endpoint	
10H	5'b0	Max Packet Size High Byte[10:8]	Max	Packet Size Low Byte[7:0]	
11H	Secondary PHY	_Type [7:5] and PHY_ID [4:0]	Primary PHY_Type [7:5] and PHY_ID [4:0]		
12H	Pause Frame F	Free Buffers High Water Mark	Pause Fran	me Free Buffers Low Water Mark	
13H	Length of Full-Speed Device Descriptor (bytes)		EEPROM Offset of Full-Speed Device Descriptor		
14H	Length of Full-S	Speed Configuration Descriptor (bytes)	EEPROM Offset of Full-Speed Configuration Descriptor		
15H~17H		Reserved	Reserved		
18H	Ethernet PHY	Power Saving Configuration		EEPROM Checksum	

Table 5 : Serial EEPROM Memory Map

- The value of EEPROM Checksum field, EEPROM offset 0x18 (low byte) = (0xFF SUM [EEPROM offset 07H ~ 0EH])
- The value of Ethernet PHY Power Saving Configuration field (i.e. high byte of EEPROM offset 0x18) is equal to 2nd byte of Vendor Command 0x20. The AX88772C driver will read this field from high byte of EEPROM offset 0x18 and then writes it to 2nd byte of Vendor Command 0x20 at the end of driver initialization routine and during Suspend mode configuration. This field doesn't affect AX88772C before the driver writes it to Vendor Command 0x20.

Ethernet PHY Power Saving Configuration field

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
WOLLP	0	IPFPS	AutoDetach	IPCOPSC	IPCOPS	IPPSL_1	IPPSL_0

4.1 Detailed Description

The following sections provide detailed descriptions for some of the fields in serial EEPROM memory map. For other fields not covered here, please refer to the **AX88772C EEPROM User Guide** for more details.

4.1.1 Word Count for Preload (00h)

The number of words to be preloaded by the EEPROM loader = 15h.

4.1.2 Flag (01h)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
PME_IND	PME_TYP	PME_POL	PME_PIN	PHY_ISO	1	TDPE	CEM
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TACE	RDCE	EPOM	Reserved	1	RWU	REF50_O	SP

SP: Self-Power (for USB standard command Get Status)

- 1: Self power (default).
- 0: Bus power.

REF50 O: RMII reference 50MHz clock direction

- 1: Sets AX88772C provides RMII reference 50MHz clock.
- 0: Sets AX88772C RMII reference clock source from external 50MHz clock source (default).

RWU: Remote Wakeup support.

- 1: Indicate that this device supports Remote Wakeup (default).
- 0: Not support.

EPOM: Embedded PHY copper/fiber Operation Mode

- 1: Sets embedded PHY in copper mode (default).
- 0: Sets embedded PHY in fiber mode

RDCE: RX Drop CRC Enable.

- 1: CRC byte is dropped on received MAC frame forwarding to host (default).
- 0: CRC byte is not dropped.

TACE: TX Append CRC Enable.

- 1: CRC byte is generated and appended by the ASIC for every transmitted MAC frame (default).
- 0: CRC byte is not appended.

CEM: Capture Effective Mode.

- 1: Capture effective mode enables (default).
- 0: Disabled.

TDPE: Test Debug Port Enable.

- 1: Enable test debug port for chip debug purpose.
- 0: Disable test debug port and the chip operate in normal function mode (default).

PHY_ISO: Set RMII bus to isolate mode when operating in PHY mode.

1: Set RMII bus to isolate mode (default). AX88772C can be in isolate mode when operating in PHY mode with Reverse-RMII. Following output pins are tri-stated in isolate mode.

In Reverse-RMII mode: RXD [1:0] and CRSDV, RXER, except for REF50.

0: Set RMII bus to non-isolate mode.

PME PIN: PME / GPIO 0

- 1: Set GPIO_0 pin as PME (default).
- 0: GPIO_0 pin is controlled by vendor command.

PME_POL: PME pin active Polarity.

- 1: PME active high.
- 0: PME active low (default).

PME_TYP: PME I/O Type.

- 1: PME output is a Push-Pull driver.
- 0: PME output to function as an open-drain buffer (default).

PME_IND: PME indication.

- 1: A 1.363ms pulse active when detecting wake-up event.
- 0: A static signal active when detecting wake-up event (default).

4.1.3 MAC Address (04~06h)

The MAC Address 0 to 5 bytes represent the MAC address of the device, for example, if MAC address = 01-23-45-67-89-ABh, then MAC Address 0 = 01, MAC Address 1 = 23, MAC Address 2 = 45, MAC Address 3 = 67, MAC Address 4 = 89, and MAC Address 5 = 8.

Default values: MAC Address $\{0, 1, 2, 3, 4, 5\} = 0 \times 000 \text{E} \text{_C687} \text{_7201}.$

4.1.4 PHY Register Offset for Interrupt Endpoint (0Fh)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
EtherPhyMode			PHY Register Offset 1				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
100			PHY Register Offset 2				

PHY Register Offset 1: Fill in PHY's Register Offset of Primary PHY here. Upon each Interrupt Endpoint issued, its register value will be reported in byte# 5 and 6 of Interrupt Endpoint packet (default = 00101) PHY Register Offset 2: Fill in PHY's Register Offset of Primary PHY here. Upon each Interrupt Endpoint issued, its register value will be reported in byte# 7 and 8 of Interrupt Endpoint packet (default = 00000)

EtherPhyMode: as below table (default = 000),

EtherPhyMode [2:0]	Function
000	Auto-negotiation enable with all capabilities
001	Auto-negotiation with 100BASE-TX FDX / HDX ability
010	Auto-negotiation with 10BASE-TX FDX / HDX ability
011	Reserved
100	Manual selection of 100BASE-TX FDX
101	Manual selection of 100BASE-TX HDX
110	Manual selection of 10BASE-T FDX
111	Manual selection of 10BASE-T HDX

Note:

- 1. EtherPhyMode is used to set the operation mode of embedded Ethernet PHY directly. For normal operation mode, set them to 000.
- 2. This value is latched into embedded Ethernet PHY right after it leaves reset. After that, software driver can still make change Ethernet PHY link ability through vendor command PHY Write Register to access embedded Ethernet PHY register.

4.1.5 Max Packet Size High/Low Byte (10h)

Fill the maximum RX/TX MAC frame size supported by this ASIC. The number must be even number in terms of bytes and should be less than or equal to 2048 bytes (default = 0600h).

4.1.6 Primary/Secondary PHY_Type and PHY_ID (11h)

The 3 bits PHY_Type field for both Primary and Secondary PHY is defined as follows,

000: 10/100M Ethernet PHY or 1M HomePNA PHY.

111: non-supported PHY. For example, the High Byte value of "E0h" means that secondary PHY is not supported.

Default values: Primary {PHY_Type, PHY_ID} = 10h. Secondary {PHY_Type, PHY_ID} = E0h. Note that the PHY_ID of the embedded 10/100M Ethernet PHY is being assigned to "10h".

Secondary PHY_ID always defines The PHY_ID of External Media Interface (EMI) and Secondary PHY_TYPE is not used in that case. Please refer to Table 3 for more information.

4.1.7 Pause Frame Free Buffers High Water and Low Water Mark (12H)

When operating in full-duplex mode, correct setting of this field is very important and can affect the overall packet receive throughput performance a great deal. The High Water Mark is the threshold to trigger sending Pause frame and the Low Water Mark is the threshold to stop sending Pause frame. Note that each free buffer count here represents 128 bytes of packet storage space in SRAM.

These setting values are also used in half-duplex mode to activate Backpressure to send /stop jam signal.

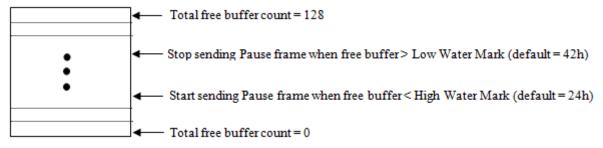


Figure 16 : Water level setting for flow control

4.1.8 Power-Up Steps

After power-on reset, AX88772C will automatically perform the following steps to the Ethernet PHYs via MDC/MDIO lines (only take effect when Chip Operation Mode is in MAC mode with external PHY on RMII interface).

- 1. Write to PHY_ID of 00h with PHY register offset 00h to power down all PHYs attached to station management interface.
- 2. Write to Primary PHY_ID with PHY register offset 00h to power down Primary PHY.
- 3. Write to Secondary PHY_ID with PHY register offset 00h to power down Secondary PHY.

Notice that enabling Default WOL Ready Mode (see 2.2 GPIO_1 Settings) will disable above power-up step (to prevent external Ethernet PHY on RMII interface from entering power-down mode), if external PHY is used.

4.2 Internal ROM Default Settings

AX88772C supports some default settings inside chip hardware to enable it to communicate with USB host controller during enumeration when the AX88772C EEPROM is blank (prior to being programmed) or the value of EEPROM Checksum field is wrong. The default settings inside chip facilitate users to update the EEPROM content through a Windows PC during R&D validation process or program a blank EEPROM mounted on target system PCB during manufacturing process.

Below table shows AX88772C's internal default settings being used in the case of blank EEPROM or EEPROM with wrong checksum value on board. Each of the address offset contains 16-bit data from left to right representing the low-byte and high-byte, respectively. For example, in offset address 0x01, the 'FD' is low-byte data and the '1D' is high-byte data.

Offset	0	1	2	3	4	5	6	7
Address	8	9	A	В	С	D	E	F
0x00	15 00	FD 1D	20 12	29 27	00 0E	C6 87	72 01	09 04
0x08	60 22	71 12	19 0E	3D 04	3D 04	3D 04	3D 04	80 05
0x10	00 06	10 E0	42 24	40 12	49 27	FF FF	00 00	FF FF
0x18	FF 08	0E 03	30 00	30 00	30 00	30 00	30 00	31 00
0x20	12 01	00 02	FF FF	00 40	95 0B	2B 77	02 00	01 02
0x28	03 01	09 02	27 00	01 01	04 E0	02 09	04 00	00 03
0x30	FF FF	00 07	07 05	81 03	08 00	0B 07	05 82	02 00
0x38	02 00	07 05	03 02	00 02	00 FF	04 03	30 00	FF FF
0x40	12 01	00 02	FF FF	00 08	95 0B	2B 77	02 00	01 02
0x48	03 01	09 02	27 00	01 01	04 E0	02 09	04 00	00 03
0x50	FF FF	00 07	07 05	81 03	08 00	A0 07	05 82	02 40
0x58	00 00	07 05	03 02	40 00	00 DD	FF FF	AA AA	BB BB
0x60	22 03	41 00	53 00	49 00	58 00	20 00	45 00	6C 00
0x68	65 00	63 00	2E 00	20 00	43 00	6F 00	72 00	70 00
0x70	2E 00	12 03	41 00	58 00	38 00	38 00	37 00	37 00
0x78	32 00	42 00	FF FF	FF FF	FF FF	FF FF	FF FF	FF FF
0x80~FF	FF FF	FF FF	FF FF	FF FF	FF FF	FF FF	FF FF	FF FF

Table 6 : Internal ROM Memory Map

Note:

- 1. The default high-byte data of offset 0x00 is 0x00.
- 2. The default PID/VID is 0x772B/0x0B95.
- 3. The default "bcdDevice" field (offset 0x26/0x46) is set to 0x0002.
- 4. The default MAC address is 00-0E-C6-87-72-01, but the real MAC address is 00-00-00-00-00-00 as auto-loaded into the AX88772C MAC Address register. You should manually assign a valid MAC address in the AX88772C driver parameter for normal network operation.
- 5. The default Manufacture string is "ASIX Elec. Corp.".
- 6. The default Product string is "AX88772B".
- 7. The default Serial Number is "000001".
- 8. The default operation mode is set to Self Power and Remote Wakeup enabled.
- 9. The default "AutoDetach" function is disabled and set to Cable Off Power Saving Level 0.
- 10. The default value of EEPROM Checksum field is 0xFF.

4.2.1 Internal ROM Description

The internal ROM is a fixed value. User can't modify it.

Field Definition	Address Offset	Default Values	Description
Vender ID (VID)	0x24 0x44	95 0B	ASIX's VID is 0x0B95
Product ID (PID)	0x25 0x45	2B 77	The PID of AX88772C is 0x772B
MAC Address	0x04 ~0x06	00 0E C6 87 72 01	MAC Address 0 ~ 5
Power Mode/Remote Wakeup/Copper or Fiber Mode	0x01 0x2C 0x4C	FD 1D E0 (high-byte only) E0 (high-byte only)	Self-Power mode, Enable the "remote wakeup" function, Copper Mode (Note 1)
Max Power under High Speed Mode	0x2D	02 (low-byte only)	4mA (Note 2)
Max Power under Full Speed Mode	0x4D	02 (low-byte only)	4mA (Note 2)
Ethernet PHY Type/ID	0x11	10 E0	Primary PHY ID is 0x10 Secondary PHY is not supported
Manufacture String	0x60~0x70	22 03 41 00 53 00 49 00 58 00 20 00 45 00 6C 00 65 00 63 00 2E 00 20 00 43 00 6F 00 72 00 70 00 2E 00	"ASIX Elec. Corp."
Product String	0x71~0x79	12 03 41 00 58 00 38 00 38 00 37 00 37 00 32 00 42 00	"AX88772B"
Serial Number String	0x19~0x1F	0E 03 30 00 30 00 30 00 30 00 30 00 31 00	"000001"
Ethernet PHY Power Saving Configuration	0x18	08 (high-byte only)	Disable "AutoDetach" Set to Cable Off Power Saving Level 0

Table 7 : Internal ROM Description

Note 1: Power Mode/Remote Wakeup/PME Settings

The offset 0x01 field of AX88772C EEPROM is used to configure the Power mode (i.e. Bus-power or Self-power), Remote Wakeup and PME functions. Please refer to datasheet Section 4 "Serial EEPROM Memory Map" for the detailed description of EEPROM offset 0x01.

The high byte of AX88772C EEPROM offset 0x2C and 0x53 fields are used to configure the "bmAttributes" field of Standard Configuration Descriptor that will be reported to the USB host controller when the GET_DESCRIPTOR command with CONFIGURATION type is issued. Please refer to below table or "Section 9.6.3 Configuration" of Universal Serial Bus Spec Rev 2.0 for the detailed description of the "bmAttributes" field of Standard Configuration Descriptor.

Table 9-10. Standard Configuration Descriptor (Continued)

Offset	Field	Size	Value	Description
7	bmAttributes	1	Bitmap	Configuration characteristics
				D7: Reserved (set to one) D6: Self-powered D5: Remote Wakeup D40: Reserved (reset to zero) D7 is reserved and must be set to one for historical reasons. A device configuration that uses power from the bus and a local source reports a non-zero value in bMaxPower to indicate the amount of bus power required and sets D6. The actual power source at runtime may be determined using the GetStatus(DEVICE) request (see Section 9.4.5). If a device configuration supports remote wakeup, D5 is set to one.

Note 2: Max Power Setting

The low byte of AX88772C EEPROM offset 0x2D and 0x54 fields are used to configure the "bMaxPower" field of Standard Configuration Descriptor that will be reported to the USB host controller when the GET_DESCRIPTOR command with CONFIGURATION type is issued. Please refer to below table or "Section 9.6.3 Configuration" of Universal Serial Bus Spec Rev 2.0 for the detailed description of the "bMaxPower" field of Standard Configuration Descriptor. These fields are used to define the Maximum power consumption of the USB device drawn from the USB bus in this specific configuration when the device is fully operational. Expressed in 2mA units (for example, 0x64 indicates for 200mA).

Table 9-10. Standard Configuration Descriptor (Continued)

Offset	Field	Size	Value	Description
8	bMaxPower	1	mA	Maximum power consumption of the USB device from the bus in this specific configuration when the device is fully operational. Expressed in 2 mA units (i.e., 50 = 100 mA). Note: A device configuration reports whether the configuration is bus-powered or self-powered. Device status reports whether the device is currently self-powered. If a device is disconnected from its external power source, it updates device status to indicate that it is no longer self-powered.
				A device may not increase its power draw from the bus, when it loses its external power source, beyond the amount reported by its configuration. If a device can continue to operate when
				disconnected from its external power source, it continues to do so. If the device cannot continue to operate, it fails operations it can no longer support. The USB System Software may determine the cause of the failure by checking the status and noting the loss of the device's power source.

4.2.2 External EEPROM Description

User can assign the specific VID/PID, Serial Number, Manufacture String, Product String, etc. user defined fields by external EEPROM. Please refer to **AX88772C EEPROM User Guide** document for more details about how to configure AX88772C EEPROM content.

5 USB Configuration Structure

5.1 USB Configuration

The AX88772C supports 1 Configuration only.

5.2 USB Interface

The AX88772C supports 1 interface.

5.3 USB Endpoints

The AX88772C supports following 4 endpoints:

- Endpoint 0: Control endpoint. It is used for configuring the device.
- Endpoint 1: Interrupt endpoint. It is used for reporting status.
- Endpoint 2: Bulk In endpoint. It is used for receiving Ethernet Packet.
- Endpoint 3: Bulk Out endpoint. It is used for transmitting Ethernet Packet.

6 Electrical Specifications

6.1 DC Characteristics

6.1.1 Absolute Maximum Ratings

Symbol	Description	Rating	Unit
VCCK	Digital core power supply	- 0.3 to 2.16	V
VCC18A	Analog Power. 1.8V	- 0.3 to 2.16	V
VCC3IO	Power supply of 3.3V I/O	- 0.3 to 4	V
VCC3R3	Power supply of on-chip voltage regulator	- 0.3 to 4	V
VCC3A3	Analog Power 3.3V for Ethernet PHY bandgap	- 0.3 to 3.8	V
VCC33A_PLL	Analog Power 3.3V for USB PLL.	- 0.3 to 4	V
VCC33A_H	Analog Power 3.3V for USB TX and RX	- 0.3 to 4	V
$V_{\rm IN18}$	Input voltage of 1.8V I/O	- 0.3 to 2.16	V
V_{IN3}	Input voltage of 3.3V I/O	- 0.3 to 4.0	V
	Input voltage of 3.3V I/O with 5V tolerant	- 0.3 to 5.8	V
T_{STG}	Storage temperature	- 65 to 150	$^{\circ}\mathbb{C}$
$I_{\rm IN}$	DC input current	50	mA
I_{OUT}	Output short circuit current	50	mA

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the optional sections of this datasheet. Exposure to absolute maximum rating condition for extended periods may affect device reliability.

6.1.2 Recommended Operating Condition

Symbol	Description	Min	Тур	Max	Unit
VCCK	Digital core power supply	1.62	1.8	1.98	V
VCC18A	Analog core power supply	1.62	1.8	1.98	V
VCC3R3	Power supply of on-chip voltage regulator	2.97	3.3	3.63	V
VCC3IO	Power supply of 3.3V I/O	2.97	3.3	3.63	V
VCC33A_H	Analog Power 3.3V for USB TX and RX	2.97	3.3	3.63	V
VCC33A_PLL	Analog Power 3.3V for USB PLL.	2.97	3.3	3.63	V
VCC3A3	Analog power supply for bandgap	2.97	3.3	3.63	V
T_{j}	Junction operating temperature	0	25	125	$^{\circ}\!\mathbb{C}$
T_a	Commerical ambient operating temperature in still air	0	-	70	$^{\circ}\!\mathbb{C}$

6.1.3 Leakage Current and Capacitance

Symbol	Description	Conditions	Min	Тур	Max	Unit
I_{IN}	True 3.3V I/O input leakage current	Vin=3.3V or 0V	-	<±1	-	μΑ
	3.3V with 5V tolerance I/O input leakage current	Vin=5V or 0V	-	<±1	-	μΑ
C_{IN}	Input capacitance	3.3V I/O cells	-	2.3	-	pF
		3.3V with 5V tolerance I/O cells	-	4	-	pF
C_{OUT}	Output capacitance		-	2.2	-	pF
C_{BID}	Bi-directional buffer capacitance		-	2.2	-	pF

Note: The capacitance listed above does not include pad capacitance and package capacitance. One can estimate pin capacitance by adding a pad capacitance of about 0.5pF to the package capacitance.

6.1.4 DC Characteristics of 3.3V I/O Pins

Symbol	Description	Conditions	Min	Тур	Max	Unit
VCC3IO	Power supply of 3.3V I/O	3.3V I/O	2.97	3.3	3.63	V
Tj	Junction temperature		0	25	125	$\mathbb{O}_{\!\!\!\!\circ}$
Vil	Input low voltage	LVTTL	-	-	0.8	V
Vih	Input high voltage		2.0	-	ı	V
Vt	Switching threshold			1.5		V
Vt-	Schmitt trigger negative going threshold voltage	LVTTL	0.8	1.15	-	V
Vt+	Schmitt trigger positive going threshold voltage		-	1.65	2.0	V
Vol	Output low voltage	$ Iol = 2 \text{ mA} \sim 16 \text{ mA}$	-	-	0.4	V
Voh	Output high voltage	$ Ioh = 2 \text{ mA} \sim 16 \text{ mA}$	2.4	-	ı	V
Rpu	Input pull-up resistance	PU = VCC3IO, PD = 0V	40	75	190	$\mathbf{K}\Omega$
Rpd	Input pull-down resistance	PU = 0V, PD = VCC3IO	40	75	190	$K\Omega$

6.1.5 DC Characteristics of 3.3V with 5V Tolerance I/O Pins

Symbol	Description	Conditions	Min	Тур	Max	Unit
VCC3IO	Power supply of 3.3V I/O	3.3V I/O	2.97	3.3	3.63	V
Tj	Junction temperature		0	25	125	$^{\circ}\mathbb{C}$
Vil	Input low voltage	LVTTL	-	-	0.8	V
Vih	Input high voltage		2.0	-	-	V
Vt	Switching threshold			1.5		V
Vt-	Schmitt trigger negative going	LVTTL	0.8	1.15	-	V
	threshold voltage					
Vt+	Schmitt trigger positive going		-	1.65	2.0	V
	threshold voltage					
Vol	Output low voltage	$ Iol = 2 \text{ mA} \sim 16 \text{ mA}$	-	-	0.4	V
Voh	Output high voltage	$ Ioh = 2 \text{ mA} \sim 16 \text{ mA}$	2.4	-	-	V
Vopu[1]	Output pull-up voltage for 5V	PU = VCC3IO, PD = 0V,	VCC3IO-0.9	-	-	V
	tolerance I/O cells	$E = 0$, $ Ipu = 1 \mu A$				
Rpu	Input pull-up resistance	PU = VCC3IO, PD = 0V	40	75	190	ΚΩ
Rpd	Input pull-down resistance	PU = 0V, PD = VCC3IO	40	75	190	ΚΩ

^[1]This parameter indicates that the pull-up resistor for the 5V tolerance I/O cells cannot reach the VCC3IO DC level even without the DC loading current.

6.1.6 DC Characteristics of Voltage Regulator

Symbol	Description	Conditions	Min	Тур	Max	Unit
VCC3R3	Power supply of on-chip voltage regulator.		3.0	3.3	3.6	V
Tj	Operating junction temperature.		0	25	125	$^{\circ}\!\mathbb{C}$
Iload	Driving current.	Normal operation	-	-	150	mA
V18F	Output voltage of on-chip voltage regulator.	VCC3R3 = 3.3V	1.71	1.8	1.89	V
Vdrop	Dropout voltage.	\triangle V18F = -1%, Iload = 10mA	-	-	0.2	V
<u> </u>	Line regulation.	VCC3R3 = 3.3V, Iload = 10mA	-	0.2	0.4	%/V
<u>△V18F</u> (△Iload x V18F)	Load regulation.	$VCC3R3 = 3.3V, 1mA \le Iload$ $\le 150mA$	-	0.02	0.05	%/mA
<u></u>	Temperature coefficient.	$VCC3R3 = 3.3V,0^{\circ}C \leq Tj \leq 125^{\circ}C$	-	0.4	-	mV/°C
Iq_25°C	Quiescent current at 25 °C	VCC3R3 = 3.3V, Iload = 0mA, Tj = 25 $^{\circ}$ C	1	66	96	μΑ
Iq_125℃	Quiescent current at 125 °C	VCC3R3 = 3.3V, Iload = 0mA, Tj = 125 $^{\circ}$ C	ı	85	115	μΑ
Cout	Output external capacitor.		3.3	-	-	μ F
ESR	Allowable effective series resistance of external capacitor.		0.5	-	-	Ω

6.1.7 DC Characteristics of Fiber Interface

Fiber Transmitter Specification						
Symbol	Description	Conditions	Min	Тур	Max	Unit
Vol	Output low voltage		1.2	1.57	1.95	V
Voh	Output high voltage		2.0	2.4	2.7	V
Vod	Differential output voltage		0.54	0.83	1.15	V
Vol(od)	Output low voltage (overdrive)		1.1	1.5	1.85	V
Voh(od)	Output high voltage (overdrive)		2.2	2.5	2.8	V
Vod (od)	Differential output voltage (overdrive)		0.65	1.02	1.4	V
	Fiber Receiver Specification					
Vicm	Input commond-mode voltage range		1.67	2.0	2.33	V
Vidth	Input differential threshold voltage		50	-	-	mV

Fiber SD (Signal Detect) Input Voltage Specification				
SD input voltage (Visd) Operation mode				
Visd < 0.2V	Copper mode			
1.0V < Visd < 1.8V	Fiber mode			
	No signal detected			
Visd > 2.2V	Fiber mode			
	Signal detected			

6.2 Thermal Characteristics

Description	Symbol	Rating	Units
Thermal resistance of junction to case	Өзс	16.7	°C/W
Thermal resistance of junction to ambient	Ө ЈА	52.2	°C/W

Note: θ_{JA} , θ_{JC} defined as below

$$\theta_{JA} = \frac{T_J - T_A}{P} \,, \; \theta_{JC} = \frac{T_J - T_C}{P}$$

 T_J : maximum junction temperature T_A : ambient or environment temperature T_C : the top center of compound surface temperature P: input power (watts)

6.3 Power Consumption

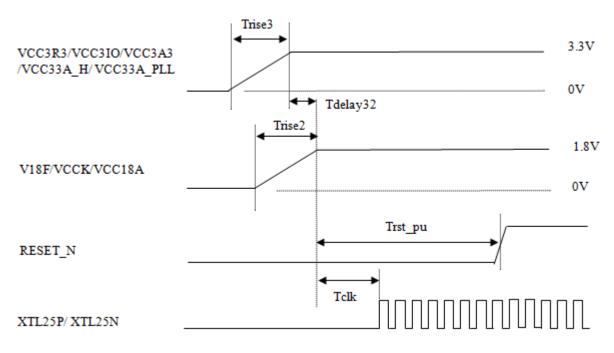

Symbol		Conditions	Min	Тур	Max	Unit
IVCC18	Current Consumption of 1.8V	Operating at Ethernet 100Mbps full duplex mode	-	75.5	-	mA
Ivcc33	Current Consumption of 3.3V	and USB High speed mode	-	32.0	-	mA
Ivcc18	Current Consumption of 1.8V	Operating at Ethernet 100Mbps full duplex mode	-	70.6	-	mA
Ivcc33	Current Consumption of 3.3V	and USB Full speed mode	-	26.1	-	mA
Ivcc18	Current Consumption of 1.8V	Operating at Ethernet 10Mbps full duplex mode and	-	20.5	-	mA
Ivcc33	Current Consumption of 3.3V	USB High speed mode	-	30.5	-	mA
Ivcc18	Current Consumption of 1.8V	Operating at Ethernet 10Mbps full duplex mode and	-	15.7	-	mA
Ivcc33	Current Consumption of 3.3V	USB Full speed mode	-	25.7	-	mA
Ivcc18	Current Consumption of 1.8V	Ethernet unlink (Disable AutoDetach)	-	15.5	-	mA
Ivcc33	Current Consumption of 3.3V		-	19.0	-	mA
Ivcc18	Current Consumption of 1.8V	Ethernet unlink (Enable AutoDetach)	-	2.3	-	mA
Ivcc33	Current Consumption of 3.3V		-	4.5	-	mA
Ivcc18	Current Consumption of 1.8V	Suspend and enable Remote WakeUp and disable		62.7	-	mA
Ivcc33	Current Consumption of 3.3V	WOLLP (WOL Low Power)	-	12.7	-	mA
Ivcc18	Current Consumption of 1.8V	Suspend and enable Remote WakeUp and enable	-	7.5	-	mA
Ivcc33	Current Consumption of 3.3V	WOLLP (WOL Low Power)	-	9.9	-	mA
Ivcc18	Current Consumption of 1.8V	Suspend and disable Remote WakeUp	-	20	-	μΑ
Ivcc33	Current Consumption of 3.3V		-	165	-	μΑ
Ivcc18	Current Consumption of 1.8V	Operating at Rev-RMII PHY mode, Ethernet	-	21.5	-	mA
Ivcc33	Current Consumption of 3.3V	100Mbps full duplex mode and USB High speed mode (Embedded PHY is powered down)	-	33.3	-	mA
Ivcc18	Current Consumption of 1.8V	Operating at Rev-RMII PHY mode, Ethernet	-	16.0	-	mA
Ivcc33	Current Consumption of 3.3V	100Mbps full duplex mode and USB Full speed mode (Embedded PHY is powered down)		27.4	-	mA
I _{DEVICE}	Power consumption of AX88772C	1.8V	-	75.5	-	mA
	full loading (chip only)	3.3V	-	32.0	-	mA
I _{SYSTEM}	Power consumption of AX88772C full loading (demo board)	Total of 3.3V (Including VCC3R3 regulator supplies 1.8V to VCCK and VCC18A)	1	168	-	mA

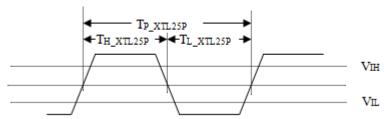
Table 8 : Power consumption

6.4 Power-up Sequence

At power-up, the AX88772C requires the VCC3R3/VCC3IO/VCC3A3/VCC33A_H/ VCC33A_PLL power supply to rise to nominal operating voltage within Trise3 and the V18F/VCCK/VCC18A power supply to rise to nominal operating voltage within Trise2.

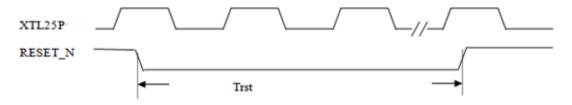
Symbol	Description	Condition	Min	Тур	Max	Unit
T_{rise3}	3.3V power supply rise time	From 0V to 3.3V	0.4	ı	10	ms
T_{rise2}	1.8V power supply rise time	From 0V to 1.8V	-	-	10	ms
$T_{delay32}$	3.3V rise to 1.8V rise time delay		-5	-	5	ms
T_{clk}	25MHz crystal oscillator	From VCC18A = 1.8V to first clock	-	1	-	ms
	start-up time	transition of XTALIN or XTALOUT				
T_{rst_pu}	RSTn low level interval time	From VCCK/VCC18A = 1.8V and	$T_{clk} + Trst^{*1}$	-	-	ms
	from power-up	VCC3IO = 3.3V to RSTn going high	Trst *1			

 $^{^{*1}}$: Please refer to 1.09.16.5.2 Reset Timing for the details about the Trst.

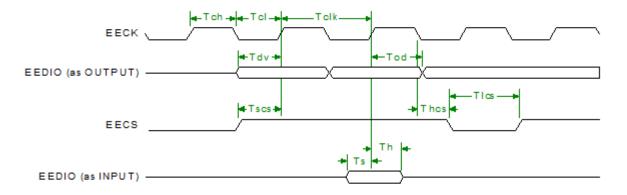


6.5 AC Timing Characteristics

Notice that the following AC timing specifications for output pins are based on CL (Output load) =50pF.

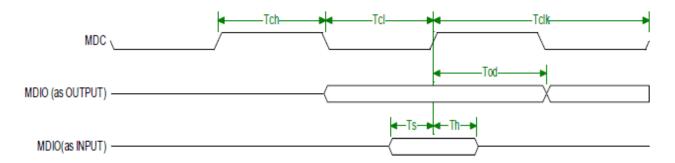

6.5.1 Clock Timing

Symbol	Description	Condition	Min	Тур	Max	Unit
T_{P_XTL25P}	XTL25P clock cycle time		-	40.0	-	ns
T_{H_XTL25P}	XTL25P clock high time		-	20.0	-	ns
T_{L_XTL25P}	XTL25P clock low time		-	20.0	-	ns


6.5.2 Reset Timing

Symbol	Description	Min	Тур	Max	Unit
Trst	Reset pulse width after XTL25P is running	125	-	250000	XTL25P clock cycle
					(Note)

Note: If the system applications require using hardware reset pin, RESET_N, to reset AX88772C during device initialization or normal operation after VBUS pin is asserted, the above timing spec (Min=5 μ s, Max=10ms) of RESET_N should be met.

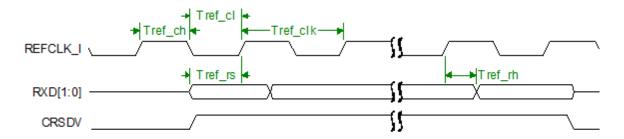

6.5.3 Serial EEPROM Timing

Symbol	Description	Min	Тур	Max	Unit
Tclk	EECK clock cycle time	-	5120	ı	ns
Tch	EECK clock high time	-	2560	-	ns
Tcl	EECK clock low time	-	2560	-	ns
Tdv	EEDIO output valid to EECK rising edge time	2560	-	-	ns
Tod	EECK rising edge to EEDIO output delay time	2562	-	-	ns
Tscs	EECS output valid to EECK rising edge time	2560	-	-	ns
Thes	EECK falling edge to EECS invalid time	7680	-	-	ns
Tlcs	Minimum EECS low time	23039	-	-	ns
Ts	EEDIO input setup time	20	_	ı	ns
Th	EEDIO input hold time	0	-	-	ns

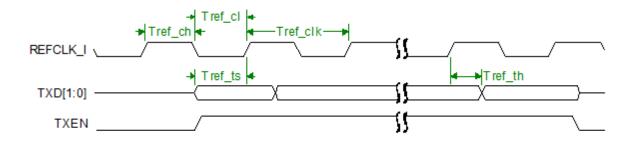
6.5.4 Station Management Timing

MAC mode with RMII: MDC=Output

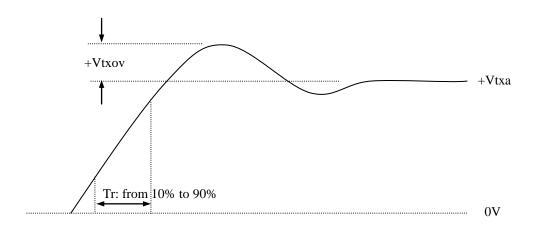
Symbol	Description	Min	Тур	Max	Unit
Tclk	MDC clock cycle time	-	640	1	ns
Tch	MDC clock high time	-	320	1	ns
Tcl	MDC clock low time	-	320	-	ns
Tod	MDC clock rising edge to MDIO output delay	0.5	-	-	Tclk
Ts	MDIO data input setup time	125	-	1	ns
Th	MDIO data input hold time	0	=	-	ns


PHY mode (Reverse-RMII): MDC=Input

Symbol	Description	Min	Тур	Max	Unit
Tclk	MDC clock cycle time	-	320	-	ns
Tch	MDC clock high time	-	160	-	ns
Tcl	MDC clock low time	-	160	1	ns
Tod	MDC clock rising edge to MDIO output delay	0	-	300	ns
Ts	MDIO data input setup time	10	-	-	ns
Th	MDIO data input hold time	10	-	-	ns


Note: MDC is Pin#17, MDIO is Pin#18.

6.5.5 RMII / Reverse-RMII Timing



Symbol	Description	Min	Тур	Max	Unit
Tref_clk	Clock cycle time	-	20.0	-	ns
Tref_ch	Clock high time	-	10.0	-	ns
Tref_cl	Clock low time	-	10.0	-	ns
Tref_rs	RXD [1:0], CRSDV setup to rising REFCLK_I	4.0	-	-	ns
Tref_rh	RXD [1:0], CRSDV hold (delay time) from rising	2.0	-	-	ns
	REFCLK_I				

Symbol	Description	Min	Typ	Max	Unit
Tref_ts	TXD [1:0], TXEN setup to rising REFCLK_I	4.0	1	-	ns
Tref_th	TXD [1:0], TXEN hold from rising REFCLK_I	2.0	Ī	-	ns

6.5.6 10/100M Ethernet PHY Interface Timing

10/100M Ethernet PHY Transmitter Waveform and Spec:

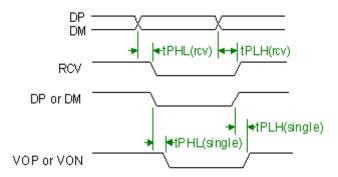
Symbol	Description	Condition	Min	Тур	Max	Units
	Peak-to-peak differential output voltage	10BASE-T mode	4.4	5	5.6	V
Vtxa *2	Peak-to-peak differential output voltage	100BASE-TX mode	1.9	2	2.1	V
Tr / Tf	Signal rise / fall time	100BASE-TX mode	3	4	5	ns
	Output jitter	100BASE-TX mode, scrambled idle	-	-	1.4	ns
		signal				
Vtxov	Overshoot	100BASE-TX mode	-	-	5	%

10/100M Ethernet PHY Receiver Spec:

Symbol	Description	Condition	Min	Тур	Max	Units
	Receiver input impedance		10	-	-	$\mathbf{K}\Omega$
	Differential squelch voltage	10BASE-T mode	300	400	500	mV
	Common mode input voltage		2.97	3.3	3.63	V
	Maximum error-free cable length		100	-	-	meter

6.5.7 USB Transceiver Interface Timing

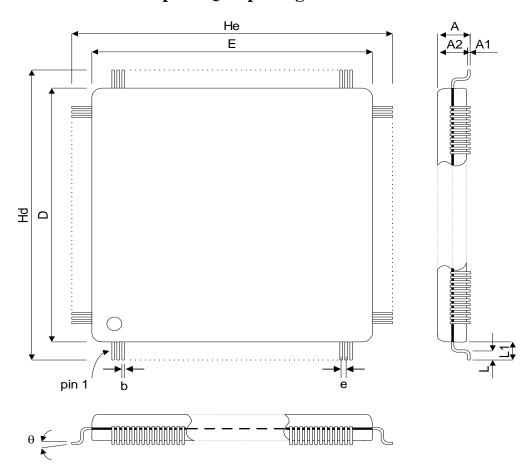
VCC33A_H/ VCC33A_PLL= 3.0 ~ 3.6 V.


Static Characteristic for Analog I/O Pins (DP/DM):

Symbol	Description	Conditions	Min	Тур	Max	Unit		
USB 2.0 Transceiver (HS)								
Input Levels (Differential Receiver) Vuscous High speed differential input Vuscous Vuscous 300 mV								
V _{HSDIFF}	sensitivity	$ V_{I (DP)} - V_{I (DM)} $	300	-	-	mV		
	Schsitivity	Measured at the connection as						
X 7	High speed data signaling	an application circuit.	-50	_	500	mV		
V _{HSCM}	common mode voltage range		-30	_	300	111 V		
V _{HSSO}	High speed squelch detection	Squelch detected	-	-	100	mV		
y nssy	threshold	No squelch detected	200	_	_	mV		
		1	200		_	111 V		
		t levels (differential)						
V _{HSOI}	High speed idle level output voltage		-10	ı	10	mV		
V _{HSOL}	High speed low level output voltage		-10	-	10	mV		
V _{HSOH}	High speed high level output voltage		-360	-	400	mV		
VCHIRPJ	Chirp-J output voltage		700	-	1100	mV		
VCHIRPK	Chirp-K output voltage		-900	-	-500	mV		
		Resistance						
Rdrv	Driver output impedance	Equivalent resistance used as	40.5	45	49.5	Ohm		
		internal chip						
		Termination	ı		ı			
V_{TERM}	Termination voltage for pull-up		3.0	-	3.6	V		
	resistor on pin RPU	ransceiver (FS/LS)						
		(Differential Receiver)						
V_{DI}	Differential input sensitivity	VI (DP) -VI (DM)	0.2	-	_	V		
V _{CM}	Differential common mode voltage		0.8	-	2.5	V		
Input Levels (Single-Ended Receiver)								
Vse	Single ended receiver threshold		0.8	-	2.0	V		
		Output levels						
Vol	Low-level output voltage		0	-	0.3	V		
Voh	High-level output voltage		2.8	-	3.6	V		

Dynamic Characteristic for Analog I/O Pins (DP/DM):

Symbol	Description					Unit		
Driver Characteristic								
	TT' 1 1 1'CC (' 1''	High-Speed Mode	500	ı	T			
thsr	High-speed differential rise time	-	500	-	-	ps		
thsf	High-speed differential fall time	-	500	-	-	ps		
		Full-Speed Mode						
tfr	Rise time of DP/DM	CL=50pF; 10 to 90% of	4	-	20	ns		
		Voh – Vol						
$\mathfrak{t}_{ ext{FF}}$	Fall time of DP/DM	CL=50pF; 90 to 10% of	4	-	20	ns		
		Voh-Vol						
t frma	Differential rise/fall time	Excluding the first transition	90	-	110	%		
	matching (tfr / tff)	from idle mode						
Vcrs	Output signal crossover voltage	Excluding the first transition	1.3	-	2.0	V		
		from idle mode						
		Driver Timing						
		High-Speed Mode						
	Driver waveform requirement	See eye pattern of template 1	Follow		1 describe	d in USB		
					.0 spec.	(1		
			(http://w	ww.usb.c	org/develo	pers/docs)		
	1	Full-Speed Mode	ı	ı	1			
	VI, FSE 0, OE to DP, DN	For detailed description of VI,	-	-	15	ns		
	Propagation delay	FSE 0 and OE, please refer to						
		USB rev 1.1specification. Receiver Timing						
		High-Speed Mode						
	In		T. 11	. 1 .	4 1 11	1: TIOD		
	Data source jitter and receiver jitter tolerance	See eye pattern of template 4	Follow		4 describe	d in USB		
	Ther tolerance		rev 2.0 spec. (http://www.usb.org/developers/d					
	<u> </u>	Full-Speed Mode	(<u>11ttp.// W</u>	w w.uso.c	ng/ucvelu	pers/docs)		
tPLH(rcv)	Receiver propagation delay	For detailed description of	_	_	15	ns		
, ,	(DP; DM to RCV)	RCV, please refer to USB rev			(Note)	-		
tphl (rcv)	,	1.1specification.			, ,			
tplH(single)	Receiver propagation delay	-	-		15	ns		
tPHL(single)	(DP; DM to VOP, VON)				(Note)			
u nr(single)								


Note: Full-Speed Timing diagram

7 Package Information

7.1 AX88772C 64-pin LQFP package

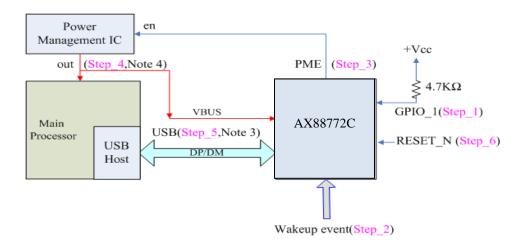
Symbol	Millimeter						
Symbol	Min	Тур	Max				
A1	0.05	-	0.15				
A2	1.35	1.40	1.45				
A	-	-	1.60				
b	0.13	0.18	0.23				
D	7.00 BSC						
Е	7.00 BSC						
e	0.40 BSC						
Hd	9.00 BSC						
Не		9.00 BSC					
L	0.45	0.60	0.75				
L1	1.00 REF						
θ	0°	3.5°	7°				

8 Ordering Information

Part Number	Description
AX88772CLF	64 PIN, LQFP Package, Commerical grade 0°C to +70 °C (Green,
	Lead-Free)

9 Revision History

Revision	Date	Comment
V0.10	2013/02/22	Preliminary release.
V0.20	2013/03/01	1. Modified the title string.
		2. Modified some descriptions in Section 1.1, 2.1.
		3. Updated the block diagram in Section 1.2.
		4. Added the "DC Characteristics of Fiber Interface" information in Section 9.1.7.
V1.00	2013/05/03	1. Corrected a typo in the Title string.
		2. Changed the "Node ID" wording to "MAC Address" in Section 4.
		3. Modified some descriptions in Section 5.
		4. Removed Section 6, 7, 8.
		5. Added the Rev-RMII PHY power consumption in Section 6.3.
V1.01	2013/05/08	1. Modified the description in Title string.
		2. Modified some descriptions in Section 1.1.
V1.10	2013/05/15	1. Modified some descriptions in the Features page and Section 3.11, 6.1.2, 6.1.6, 8.
V1.20	2014/05/14	1. Modified some descriptions in Section 7.
V1.30	2016/02/26	1. Modified some information in Section 6.1.
V1.31	2016/04/11	1. Modified some descriptions in Section 6.1.


APPENDIX A. Default Wake-On-LAN (WOL) Ready Mode

This Default WOL Ready Mode application is different from normal operation where AX88772C Suspend/Resume state usually has to be configured by software driver during normal system operation. This application applies to a system that needs to use a predefined remote wakeup event to turn on the power supply of the system processor and its peripheral circuits without having any system software running in the beginning. This is quite useful when a system has been powered down already and a user needs to power on the system from a remote location.

The AX88772C can be configured to support Default WOL Ready Mode, where no system driver is required to configure its WOL related settings after power on reset. A system design usually partitions its power supply into two or more groups and the AX88772C is supplied with an independent power separated from the system processor. The power supply of AX88772C is usually available as soon as power plug is connected. The power supply of system processor remains off initially when power plug is connected and is controlled by AX88772C's PME pin, which can be activated whenever AX88772C detects a predefined wakeup event such as valid Magic Packet reception, Secondary PHY link-up, or the EXTWAKEUP_N pin trigger. To conserve power consumption, initially the USB host controller communicating with AX88772C can also be unpowered as the system processor.

The PME pin of AX88772C can control the power management IC to power up the system processor along with the USB host controller, which will perform USB transactions with AX88772C after both have been initialized. The pin polarity of PME is configured as high active when enabling Default WOL Ready Mode (see following **A.1** Note 2). Note that the AX88772C must be in self-power (via setting EEPROM Flag [0]) mode for this function.

A.1 Procedure to Enable Default WOL Ready Mode

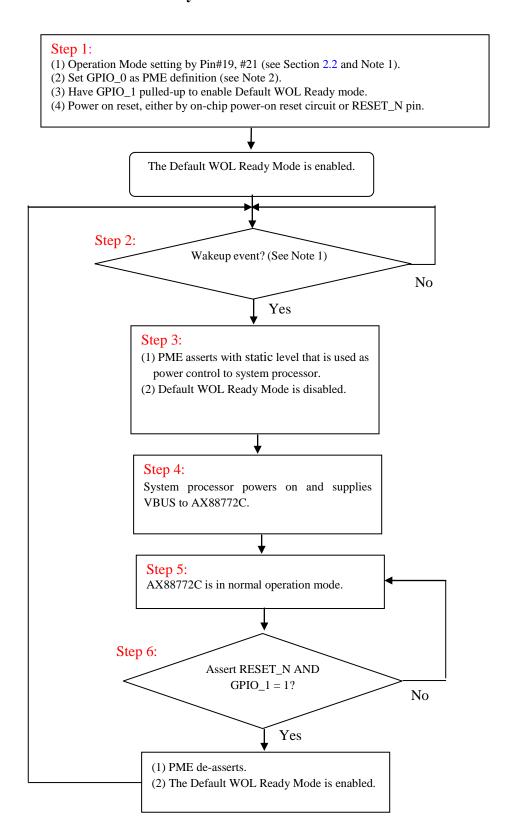
To enable Default WOL Ready Mode, a user needs to configure GPIO_0 pin definition as PME (via setting EEPROM Flag [12]) and have GPIO_1 pulled-up with a 4.7Kohm resistor. After power on reset, AX88772C will disable most functions including USB transceiver (see Note 3) but enable Magic Packet detector logic and internal Ethernet PHY and its auto-negotiation function to be ready to receive Magic Packet. In PHY mode for AX88772C, Secondary PHY link-up can be a wakeup event (see Note 1).

When a valid Magic Packet is received, AX88772C will assert the PME pin to indicate to system processor the wakeup event. The PME pin, when being configured as static level output signal (via setting EEPROM Flag [15], see Note 2), can be used to control the power management IC to enable system power supply. After asserting the PME pin, AX88772C will also exit from the Default WOL Ready Mode and revert back to normal operation mode to start normal USB device detection, handshaking, and enumeration.

USB 2.0 to 10/100M Fast Ethernet Controller with Microsoft AOAC Support

The PME pin, when being configured as static level output signal, maintains its signal level until RESET_N is asserted again. If asserting RESET_N to AX88772C with GPIO_1 pulled-up, the Default WOL Ready Mode will be re-entered. Otherwise (GPIO_1 being pulled-down), the normal operation mode (non-Default WOL Ready Mode) will be entered and the normal USB device detection, handshaking and enumeration process should take place right after RESET_N negation.

- Note 1: For complete truth table of wakeup events supported, please refer to below **Remote Wakeup Truth Table** on the "GPIO_1 = 1" setting.
- Note 2: Please refer to 4.1.2 Flag. The bit [15:12] of Flag (PME IND, PME TYP, PME POL, PME PIN) = 0111.
- Note 3: When the Default WOL Ready Mode is enabled, the DP/DM pins of AX88772C will be in tri-state.
- Note 4: It is recommended that VBUS pin be connected to system power group directly. This way the V_BUS will become logic high when power management IC enables the system power supply.


Waken		Setting					Wakeup Event				Device		
Up by	RWU bit of Flag byte in EEPROM	Set_Feature standard command	RWWF	RWMP	RWLC	GPIO_1 (*)	Host sends resume signal	Receiving a Wakeup Frame	Receiving a Magic Packet	change detected	Link status change detected On Secondary PHY	EXTWAKEU P_N pin	wakes up
USB Host	X	X	X	X	X	0	J → K			1111			Yes
Device	0	0	X	X	X	0		X	X	X	X	X	No
Device	1	1	1	0	0	0		Yes					Yes
Device	1	1	0	1	0	0			Yes				Yes
Device	1	1	0	0	1	0				Yes			Yes
Device	1	1	0	0	1	0					Yes		Yes
Device	1	1	X	X	X	0						Low-pulse	Yes
Device	X	0	0	0	0	1			Yes	·	Yes	Low-pulse	Yes

^{*:} About Default WOL Ready Mode, please refer to section 2.2 GPIO_1 Settings.

Table 9 : Remote Wakeup Truth Table

A.2 Flow Chart of Default WOL Ready Mode

APPENDIX B. Ethernet PHY Power and Reset Control

This section indicates some information about AX88772C Ethernet PHY Power and Reset control.

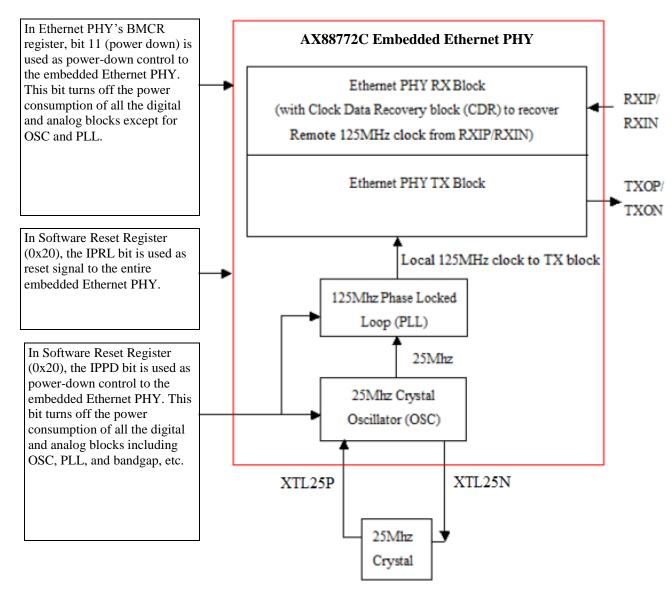
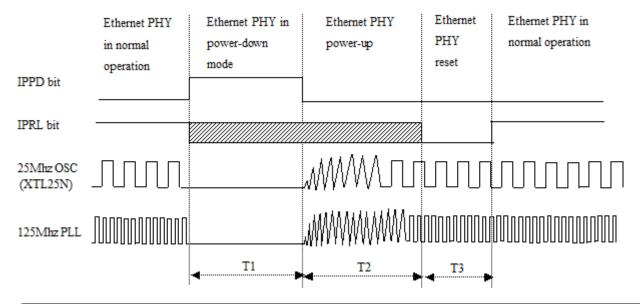



Figure 17 : Ethernet PHY Oscillator/PLL Block Diagram

USB 2.0 to 10/100M Fast Ethernet Controller with Microsoft AOAC Support

The following power-up and reset signal timing issued to the Ethernet PHY of AX88772C must be met in order to initialize the Ethernet PHY properly and reliably every time after it has been put into power-down mode previously.

Symbol	Description	Min	Тур	Max
T1	Ethernet PHY in power-down mode where the internal 25MHz OSC, 125MHz	500ns	-	-
	PLL and analog bandgap of AX88772C are completely turned off for max.			
	power saving. This is the lowest power consumption mode of the Ethernet			
	PHY.			
	Note: Alternatively, user can use the Ethernet PHY's BMCR register bit 11,			
	"power down", to set the Ethernet PHY into power-down mode. When the			
	BMCR bit 11 power-down is used, the 25MHz OSC and 125MHz PLL will			
	remain toggled but the analog bandgap will be turned off. The power			
	consumption of BMCR bit 11 power-down mode is about 15mA more than the			
	Software Reset Register (0x20) IPPD bit power-down mode.			
T2	From Ethernet PHY power-up to 25MHz OSC and 125MHz PLL stable time.	600ms	-	-
	Note: If the IPRL is low during T2, it should be kept at low for more than T2			
	time so that the Ethernet PHY can be reset properly right after the power-up. In			
	other words, the successful and reliable reset to the Ethernet PHY can only be			
	accomplished with a stable running 25MHz OSC and 125MHz PLL clocks.			
Т3	Mandatory Ethernet PHY reset time after it has just been powered up from the	500ns	-	-
	previous power-down mode (after >T2 time). Also, software can issue reset to			
	the Ethernet PHY during its non-power-down mode, but the minimum reset			
	duration defined here must be met.			

Figure 18 : Ethernet PHY Power-up & Reset Timing Diagram

4F, No.8, Hsin Ann Rd., Hsinchu Science Park, Hsinchu, Taiwan, R.O.C.

TEL: +886-3-5799500 FAX: +886-3-5799558

Email: support@asix.com.tw
Web: http://www.asix.com.tw