

BG96 Hardware Design

LTE Module Series

Rev. BG96_Hardware_Design_V1.1

Date: 2017-08-31

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved.

About the Document

History

Revision	Date	Author	Description	
1.0	2017-08-04	Lyndon LIU/ Daryl DU	Initial	
1.1	2017-08-31	Daryl DU	 Modified GSM features in Table 2. Added a note for e-I-DRX in Chapter 3.3. Elaborated the description of e-I-DRX in Chapter 3.4.3. Updated RF receiving sensitivity in Chapter 6.6. 	

Contents

Ab	oout the Document		2
Co	ontents		3
Та	ıble Index		5
Fig	gure Index		6
1	Introduction		7
	•		
2			
	·		
	•		
	· ·		
3	Application Interfaces		14
	3.1. Pin Assignment		15
		Mode (PSM)	
		Mode DRX (e-I-DRX)	
		Pins	
		age Drop	
		wer Supply	
		narios	
		e Using the PWRKEY Pin	
		e	
		Module Using the PWRKEY Pin	
		Module Using AT Command	
	,		
		f	
		faces	
		ation	
	3.15. USB_BOOT Interface	e	41
4	GNSS Receiver		42
	4.1. General Description.		42

	4.2. GN	SS Performance	42
	4.3. Lay	out Guidelines	43
5	Antenna In	nterfaces	44
	5.1. Mai	in Antenna Interface	44
	5.1.1.	Pin Definition	44
	5.1.2.	Operating Frequency	44
	5.1.3.	Reference Design of RF Antenna Interface	45
	5.1.4.	Reference Design of RF Layout	
	5.2. GN	SS Antenna Interface	47
	5.3. Ant	enna Installation	49
	5.3.1.	Antenna Requirements	49
	5.3.2.	Recommended RF Connector for Antenna Installation	
6	Electrical,	Reliability and Radio Characteristics	52
		solute Maximum Ratings	
	6.2. Pov	ver Supply Ratings	52
	6.3. Ope	eration Temperature	53
	6.4. Cur	rent Consumption	53
	6.5. RF	Output Power	54
	6.6. RF	Receiving Sensitivity	55
	6.7. Elec	ctrostatic Discharge	56
7	Mechanica	al Dimensions	57
	7.1. Med	chanical Dimensions of the Module	57
	7.2. Red	commended Footprint and Stencil Design	59
		sign Effect Drawings of the Module	
8	Storage, M	lanufacturing and Packaging	62
	8.1. Sto	rage	62
		nufacturing and Soldering	
	8.3. Pac	ckaging	63
9	Appendix A	A References	66
10	Appendix I	B GPRS Coding Schemes	69
11	Appendix	C GPRS Multi-slot Classes	70
12	Appendix I	D EDGE Modulation and Coding Schemes	71

Table Index

TABLE 1: FREQUENCY BANDS OF BG96 MODULE	9
TABLE 2: KEY FEATURES OF BG96 MODULE	10
TABLE 3: DEFINITION OF I/O PARAMETERS	16
TABLE 4: PIN DESCRIPTION	16
TABLE 5: OVERVIEW OF OPERATING MODES	22
TABLE 6: VBAT AND GND PINS	25
TABLE 7: PIN DEFINITION OF PWRKEY	26
TABLE 8: RESET_N PIN DESCRIPTION	29
TABLE 9: PIN DEFINITION OF (U)SIM INTERFACE	
TABLE 10: PIN DEFINITION OF USB INTERFACE	33
TABLE 11: PIN DEFINITION OF UART1 INTERFACE	35
TABLE 12: PIN DEFINITION OF UART2 INTERFACE	
TABLE 13: PIN DEFINITION OF UART3 INTERFACE	
TABLE 14: LOGIC LEVELS OF DIGITAL I/O	
TABLE 15: PIN DEFINITION OF PCM* AND I2C* INTERFACES	37
TABLE 16: PIN DEFINITION OF NETLIGHT	38
TABLE 17: WORKING STATE OF NETLIGHT	
TABLE 18: PIN DEFINITION OF STATUS	39
TABLE 19: DEFAULT BEHAVIORS OF RI	
TABLE 20: PIN DEFINITION OF USB_BOOT INTERFACE	
TABLE 21: GNSS PERFORMANCE	
TABLE 22: PIN DEFINITION OF MAIN ANTENNA INTERFACE	
TABLE 23: MODULE OPERATING FREQUENCIES	
TABLE 24: PIN DEFINITION OF GNSS ANTENNA INTERFACE	
TABLE 25: GNSS FREQUENCY	
TABLE 26: ANTENNA REQUIREMENTS	
TABLE 27: ABSOLUTE MAXIMUM RATINGS	
TABLE 28: POWER SUPPLY RATINGS	
TABLE 29: OPERATION TEMPERATURE	53
TABLE 30: BG96 CURRENT CONSUMPTION	53
TABLE 31: RF OUTPUT POWER	
TABLE 32: BG96 CONDUCTED RF RECEIVING SENSITIVITY	
TABLE 33: ELECTROSTATIC DISCHARGE CHARACTERISTICS	
TABLE 34: REEL PACKAGING	65
TABLE 35: RELATED DOCUMENTS	
TABLE 36: TERMS AND ABBREVIATIONS	
TABLE 37: DESCRIPTION OF DIFFERENT CODING SCHEMES	
TABLE 38: GPRS MULTI-SLOT CLASSES	
TABLE 39: EDGE MODULATION AND CODING SCHEMES	71

Figure Index

FIGURE 1: FUNCTIONAL DIAGRAM	12
FIGURE 2: PIN ASSIGNMENT (TOP VIEW)	15
FIGURE 3: STAR STRUCTURE OF THE POWER SUPPLY	26
FIGURE 4: TURN ON THE MODULE USING DRIVING CIRCUIT	27
FIGURE 5: TURN ON THE MODULE USING KEYSTROKE	27
FIGURE 6: TIMING OF TURNING ON MODULE	28
FIGURE 7: TIMING OF TURNING OFF MODULE	29
FIGURE 8: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT	30
FIGURE 9: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON	30
FIGURE 10: TIMING OF RESETTING MODULE	30
FIGURE 11: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTO	R
	32
FIGURE 12: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR	. 32
FIGURE 13: REFERENCE CIRCUIT OF USB APPLICATION	
FIGURE 14: REFERENCE CIRCUIT WITH TRANSLATOR CHIP	36
FIGURE 15: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT	37
FIGURE 16: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC	38
FIGURE 17: REFERENCE CIRCUIT OF THE NETWORK STATUS INDICATOR	39
FIGURE 18: REFERENCE CIRCUIT OF STATUS	
FIGURE 19: REFERENCE CIRCUIT OF USB_BOOT INTERFACE	41
FIGURE 20: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE	
FIGURE 21: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB	
FIGURE 22: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB	46
FIGURE 23: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE	
GROUND)	46
FIGURE 24: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE	
GROUND)	
FIGURE 25: REFERENCE CIRCUIT OF GNSS ANTENNA INTERFACE	48
FIGURE 26: DIMENSIONS OF THE UF.L-R-SMT CONNECTOR (UNIT: MM)	
FIGURE 27: MECHANICALS OF UF.L-LP CONNECTORS	
FIGURE 28: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM)	51
FIGURE 29: MODULE TOP AND SIDE DIMENSIONS	
FIGURE 30: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW)	
FIGURE 31: RECOMMENDED FOOTPRINT (TOP VIEW)	
FIGURE 32: RECOMMENDED STENCIL DESIGN (TOP VIEW)	
FIGURE 33: TOP VIEW OF THE MODULE	
FIGURE 34: BOTTOM VIEW OF THE MODULE	
FIGURE 35: REFLOW SOLDERING THERMAL PROFILE	
FIGURE 36: TAPE DIMENSIONS	
FIGURE 37: REEL DIMENSIONS	64

1 Introduction

This document defines BG96 module and describes its air interface and hardware interfaces which are connected with customers' applications.

This document can help customers quickly understand the interface specifications, electrical and mechanical details, as well as other related information of BG96. To facilitate its application in different fields, reference design is also provided for customers' reference. Associated with application note and user guide, customers can use the module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating BG96. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers an Airplane Mode which must be enabled prior to boarding an aircraft.

Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are designed to prevent possible interference with sensitive medical equipment.

Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid (U)SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

BG96 is an embedded IoT (LTE Cat.M1, LTE Cat.NB1 and EGPRS) wireless communication module without receive diversity. It provides data connectivity on LTE-TDD/LTE-FDD/GPRS/EDGE networks, and supports half-duplex operation in LTE networks. It also provides GNSS¹⁾ and voice functionality²⁾ to meet customers' specific application demands. The following table shows the frequency bands of BG96 module.

Table 1: Frequency Bands of BG96 Module

Module	LTE Bands	GSM 3)	Rx-diversity	GNSS 1)
BG96	Cat.M1 & NB1: LTE-FDD: B1/B2/B3/B4/B5/B8/B12/ B13/B18/B19/B20/B26/B28 LTE-TDD: B39 (for Cat.M1 only)	GSM850/GSM900/ DCS1800/PCS1900	Not Supported	GPS, GLONASS, BeiDou/Compass, Galileo, QZSS

NOTES

- 1. 1) GNSS function is optional.
- 2. ²⁾ BG96 supports VoLTE (Voice over LTE) by default but only for LTE Cat.M1 network.
- 3. ³⁾ BG96 GSM only supports Packet Switch.

With a compact profile of $22.5 \text{mm} \times 26.5 \text{mm} \times 2.3 \text{mm}$, BG96 can meet almost all requirements for M2M applications such as automotive, smart metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone, tablet PC, etc.

BG96 is an SMD type module which can be embedded into applications through its 102 LGA pads. BG96 supports internet service protocols like TCP, UDP and PPP. Extended AT commands have been developed for customers to use these internet service protocols easily.

2.2. Key Features

The following table describes the detailed features of BG96 module.

Table 2: Key Features of BG96 Module

Features	Details
Power Supply	Supply voltage: 3.3V~4.3V
Fower Supply	Typical supply voltage: 3.8V
	Class 3 (23dBm±2.7dB) for LTE-FDD bands
	Class 3 (23dBm±2.7dB) for LTE-TDD bands
	Class 4 (33dBm±2dB) for GSM850
	Class 4 (33dBm±2dB) for GSM900
Transmitting Power	Class 1 (30dBm±2dB) for DCS1800
	Class 1 (30dBm±2dB) for PCS1900
	Class E2 (27dBm±3dB) for GSM850 8-PSK
	Class E2 (27dBm±3dB) for GSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK
	Class E2 (26dBm±3dB) for PCS1900 8-PSK
	Support 1 4MHz BE bandwidth for LTE Cat M1
	Support 200KHz RF bandwidth for LTE Cat NR1
LTE Features	Support 200KHz RF bandwidth for LTE Cat.NB1 Support SISO in DL direction
	Cat.M1: Max. 375kbps (DL)/375kbps (UL)
	Cat.NB1: Max. 32kbps (DL)/70kbps (UL)
	GPRS:
	Support GPRS multi-slot class 33 (33 by default)
	Coding scheme: CS-1, CS-2, CS-3 and CS-4
	Max. 107Kbps (DL), Max. 85.6Kbps (UL)
	EDGE:
GSM Features	Support EDGE multi-slot class 33 (33 by default)
COM I Cataroo	Support GMSK and 8-PSK for different MCS (Modulation and Coding
	Scheme)
	Downlink coding schemes: CS 1-4 and MCS 1-9
	Uplink coding schemes: CS 1-4 and MCS 1-9
	Max. 296Kbps (DL), Max. 236.8Kbps (UL)
	Support PPP/TCP/UDP/SSL/TLS/FTP(S)/HTTP(S) protocols
Internet Protocol	Support PAP (Password Authentication Protocol) and CHAP (Challenge
Features	Handshake Authentication Protocol) protocols which are usually used for
	PPP connections
SMS	Text and PDU mode

	Point to point MO and MT				
	SMS cell broadcast				
	SMS storage: ME by default				
(U)SIM Card Interface	Support USIM/SIM card: 1.8V, 3.0V				
Audio Feature*	Support one digital audio interface: PCM interface				
	Compliant with USB 2.0 specification (slave only) and the data transfer rate				
	can reach up to 480Mbps				
USB Interface	Used for AT command communication, data transmission, GNSS NEMA output, software debugging and firmware upgrade				
	Support USB drivers for Windows XP, Windows Vista, Windows 7,				
	Windows 8/8.1, Windows 10, Windows CE 5.0/6.0/7.0, Linux 2.6/3.x/4.1,				
	Android 4.x/5.x/6.0				
	UART1:				
	Used for data transmission and AT command communication				
	115200bps by default				
	The default frame format is 8N1 (8 data bits, no parity, 1 stop bit)				
	Support RTS and CTS hardware flow control				
UART Interfaces	UART2:				
	Used for module debugging and log output				
	115200bps baud rate UART3:				
	Used for outputting GNSS data or NEMA sentences				
	115200bps baud rate				
	3GPP TS 27.007 and 3GPP TS 27.005 AT commands, as well as				
AT Commands	Quectel enhanced AT commands				
Network Indication	One NETLIGHT pin for network connectivity status indication				
Antenna Interfaces	Including main antenna (ANT_MAIN) and GNSS antenna (ANT_GNSS) interfaces				
Physical Characteristics	Size: (22.5 ± 0.15) mm × (26.5 ± 0.15) mm × (2.3 ± 0.2) mm				
Thysical Characteriolise	Weight: approx. 3.1g				
Temperature Range					
Tomporataro Hango	Extended temperature range: -40°C ~ +85°C ²⁾				
Firmware Upgrade	USB interface, DFOTA				
RoHS	All hardware components are fully compliant with EU RoHS directive				
Physical Characteristics Temperature Range Firmware Upgrade	interfaces Size: (22.5 ± 0.15) mm × (26.5 ± 0.15) mm × (2.3 ± 0.2) mm Weight: approx. 3.1g Operation temperature range: -35° C ~ $+75^{\circ}$ C $^{1)}$ Extended temperature range: -40° C ~ $+85^{\circ}$ C $^{2)}$ USB interface, DFOTA				

NOTES

- 1. "*" means under development.
- 2. 1) Within operation temperature range, the module is 3GPP compliant.
- 3. 2) Within extended temperature range, the module remains the ability to establish and maintain a

voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

2.3. Functional Diagram

The following figure shows a block diagram of BG96 and illustrates the major functional parts.

- Power management
- Baseband
- DDR+NAND flash
- Radio frequency
- Peripheral interfaces

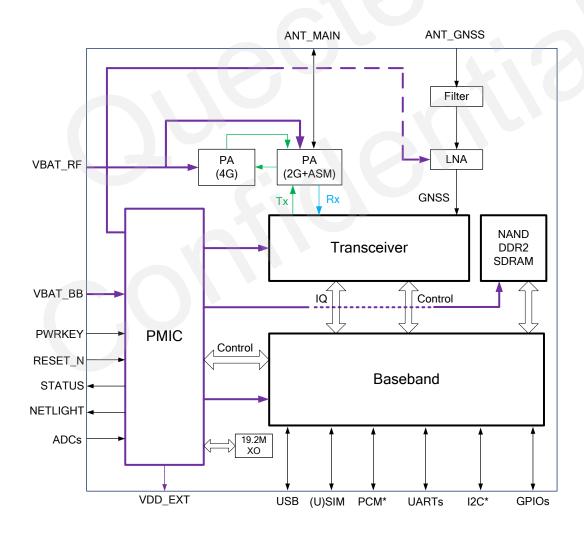


Figure 1: Functional Diagram

NOTE

"*" means under development.

2.4. Evaluation Board

In order to help customers develop applications conveniently with BG96, Quectel supplies the evaluation board (EVB), USB to RS-232 converter cable, USB data cable, earphone, antenna and other peripherals to control or test the module. For more details, please refer to **document [1]**.

3 Application Interfaces

BG96 is equipped with 102 LGA pads that can be connected to customers' cellular application platforms. The following sub-chapters will provide detailed description of interfaces listed below:

- Power supply
- (U)SIM card interface
- USB interface
- UART interfaces
- PCM* and I2C* interfaces
- Status indication
- USB_BOOT interface

3.1. Pin Assignment

The following figure shows the pin assignment of BG96.

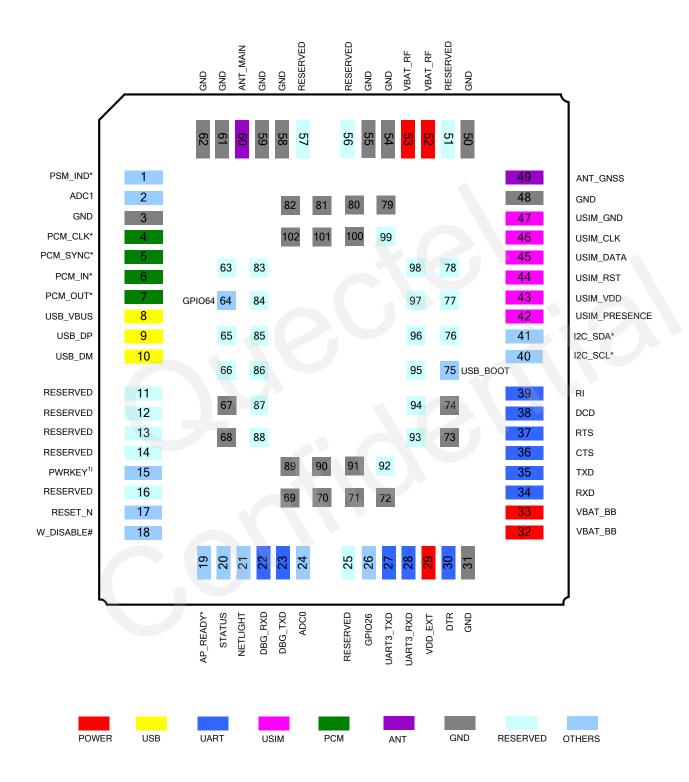


Figure 2: Pin Assignment (Top View)

NOTES

- 1. Keep all RESERVED pins and unused pins unconnected.
- 2. GND pads should be connected to ground in the design.
- 3. 1) PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
- 4. "*" means under development.

3.2. Pin Description

The following tables show the pin definition and description of BG96.

Table 3: Definition of I/O Parameters

Туре	Description
IO	Bidirectional
DI	Digital input
DO	Digital output
PI	Power input
РО	Power output
Al	Analog input
AO	Analog output
OD	Open drain

Table 4: Pin Description

Power Supply						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
VBAT_BB	32, 33	PI	Power supply for module's baseband part	Vmax=4.3V Vmin=3.3V Vnorm=3.8V		
VBAT_RF	52, 53	PI	Power supply for module's RF part	Vmax=4.3V Vmin=3.3V Vnorm=3.8V		

VDD_EXT	29	РО	Provide 1.8V for external circuit	Vnorm=1.8V I _o max=50mA	Power supply for external GPIO's pull up circuits.
GND	3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67~74, 79~82, 89~91, 100~102		Ground		
Turn on/off					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	15	DI	Turn on/off the module	V_{IH} max=2.1V V_{IH} min=1.3V V_{IL} max=0.5V	The output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
RESET_N	17	DI	Reset signal of the module	V_{IH} max=2.1V V_{IH} min=1.3V V_{IL} max=0.5V	If unused, keep this pin open.
Status Indicati	on				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
STATUS	20	DO	Indicate the module's operation status	V _{OH} min=1.35V V _{OL} max=0.45V	1.8V power domain. If unused, keep this pin open.
NETLIGHT	21	DO	Indicate the module's network activity status	V _{OH} min=1.35V V _{OL} max=0.45V	1.8V power domain. If unused, keep it open.
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	8	PI	USB detection	Vmax=5.25V Vmin=3.0V Vnorm=5.0V	
USB_DP	9	Ю	USB differential data bus (+)	Compliant with USB 2.0 standard specification.	Require differential impedance of 90Ω .
USB_DM	10	IO	USB differential	Compliant with USB 2.0 standard	Require differential impedance of 90Ω.

(U)SIM Interfac	(U)SIM Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
USIM_ PRESENCE	42	DI	(U)SIM card insertion detection	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open.	
USIM_VDD	43 PC	PO	Power supply	For 1.8V (U)SIM: Vmax=1.9V Vmin=1.7V	Either 1.8V or 3.0V is supported by the module	
_			for (U)SIM card	For 3.0V (U)SIM: Vmax=3.05V Vmin=2.7V I _O max=50mA	automatically.	
USIM_RST	44	DO	Reset signal of (U)SIM card	For 1.8V (U)SIM: V _{OL} max=0.45V V _{OH} min=1.35V		
				For 3.0V (U)SIM: V_{OL} max=0.45V V_{OH} min=2.55V		
USIM_DATA	45 IO	10	Data signal of	For 1.8V (U)SIM: V _{IL} max=0.6V V _{IH} min=1.2V V _{OL} max=0.45V V _{OH} min=1.35V		
		(U)SIM card	For 3.0V (U)SIM: V_{IL} max=1.0V V_{IH} min=1.95V V_{OL} max=0.45V V_{OH} min=2.55V			
USIM_CLK 46 DO Clock signal of (U)SIM card	Clock signal of (U)SIM card	For 1.8V (U)SIM: V _{OL} max=0.45V V _{OH} min=1.35V				
			• •	For 3.0V (U)SIM: V _{OL} max=0.45V V _{OH} min=2.55V		
USIM_GND	47		Specified ground for (U)SIM card			

UART1 Interfac	ce				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DTR	30	DI	Data terminal ready	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open
RXD	34	DI	Receive data	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open
TXD	35	DO	Transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open
CTS	36	DO	Clear to send	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open
RTS	37	DI	Request to send	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open
DCD	38	DO	Data carrier detection	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open
RI	39	DO	Ring indicator	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open
UART2 Interfac	ce				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DBG_RXD	22	DI	Receive data	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open
DBG_TXD	23	DO	Transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open
UART3 Interfac	ce				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
UART3_TXD	27	DO	Transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open
UART3_RXD	28	DI	Receive data	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open

PCM* Interface)				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PCM_CLK*	4	DO	PCM clock output	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open.
PCM_SYNC*	5	DO	PCM frame synchronization output	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open.
PCM_IN*	6	DI	PCM data input	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open.
PCM_OUT*	7	DO	PCM data output	V_{OL} max=0.45 V V_{OH} min=1.35 V	1.8V power domain. If unused, keep it open.
I2C* Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
I2C_SCL*	40	OD	I2C serial clock. Used for external codec.		External pull-up resistor is required. 1.8V only. If unused, keep it open.
I2C_SDA*	41	OD	I2C serial data. Used for external codec.	10	External pull-up resistor is required. 1.8V only. If unused, keep it open.
Antenna Interfa	aces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	60	Ю	Main antenna interface	50Ω impedance	
ANT_GNSS	49	AI	GNSS antenna interface	50Ω impedance	If unused, keep it open.
Other Pins					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PSM_IND*	1	DO	Power saving mode indicator	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep it open.
W_DISABLE#	18	DI	Airplane mode control	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V	1.8V power domain.Pull-up by default.In low voltage level, the

				V _{IH} max=2.0V	module can enter into airplane mode. If unused, keep it open.
AP_READY*	19	DI	Application processor sleep state detection	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.
USB_BOOT	75	DI	Force the module to enter into emergency download mode	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open.
GPIO26	26	Ю	General- purpose input/ output interface	V_{OL} max=0.45V V_{OH} min=1.35V V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open.
GPIO64	64	Ю	General- purpose input/ output interface	V_{OL} max=0.45V V_{OH} min=1.35V V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open.
ADC Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ADC1	2	AI	General purpose analog to digital converter interface	Voltage range: 0.3V to 1.8V	If unused, keep it open.
ADC0	24	AI	General purpose analog to digital converter interface	Voltage range: 0.3V to 1.8V	If unused, keep it open.
RESERVED P	ins				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
RESERVED	11~14, 16, 25, 51, 56, 57, 63, 65,		Reserved		Keep these pins unconnected.

66, 76~78,	
83~88,	
92~99	
	83~88,

NOTES

- 1. Keep all RESERVED pins and unused pins unconnected.
- 2. "*" means under development.

3.3. Operating Modes

The table below briefly summarizes the various operating modes referred in the following chapters.

Table 5: Overview of Operating Modes

Mode	Details					
Normal	Idle Software is active. The module has registered on network ready to send and receive data.					
Operation	Talk/Data	Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.				
Extended Idle Mode DRX (e-I-DRX)	BG96 module and the network may negotiate over non-access stratum signaling the use of e-I-DRX for reducing power consumption, while being available for mobile terminating data and/or network originated procedures within a certain delay dependent on the DRX cycle value.					
Airplane Mode	AT+CFUN command or W_DISABLE# pin can set the module into airplane mode. In this case, RF function will be invalid.					
Minimum Functionality Mode	AT+CFUN command can set the module into a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card will be invalid.					
Power Saving Mode (PSM)	BG96 module may enter into Power Saving Mode for reducing its power consumption. PSM is similar to power-off, but the module remains registered on the network and there is no need to re-attach or re-establish PDN connections.					
Power OFF Mode	active. The se	he power management unit shuts down the power supply. Software is not erial interfaces are not accessible. But operating voltage (connected to VBAT_BB) remains applied.				

NOTE

During e-I-DRX, it is recommended to use UART interface for data communication, as the use of USB interface will increase power consumption.

3.4. Power Saving

3.4.1. Airplane Mode

When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. This mode can be set via the following ways.

Hardware:

W_DISABLE# is pulled up by default. Driving it to low level will let the module enter into airplane mode.

Software:

AT+CFUN=<fun> command provides choice of the functionality level, through setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled.
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode. RF function is disabled.

NOTES

- 1. Airplane mode control via W_DISABLE# is disabled in firmware by default. It can be enabled by AT+QCFG="airplanecontrol" command. The command is still under development.
- 2. The execution of AT+CFUN command will not affect GNSS function.

3.4.2. Power Saving Mode (PSM)

BG96 module can enter into PSM for reducing its power consumption. The mode is similar to power-off, but the module remains registered on the network and there is no need to re-attach or re-establish PDN connections. So BG96 in PSM cannot immediately respond users' requests.

When the module wants to use the PSM it shall request an Active Time value during every Attach and TAU procedures. If the network supports PSM and accepts that the module uses PSM, the network confirms usage of PSM by allocating an Active Time value to the module. If the module wants to change the Active Time value, e.g. when the conditions are changed in the module, the module consequently requests the value it wants in the TAU procedure.

If PSM is supported by the network, then it can be enabled via AT+CPSMS=1 command.

Either of the following methods will wake up the module from PSM:

- Drive PWRKEY pin to low level will wake up the module.
- When the T3412 timer expires, the module will be automatically woken up.

NOTE

Please refer to document [2] for details about AT+CPSMS command.

3.4.3. Extended Idle Mode DRX (e-I-DRX)

The module (UE) and the network may negotiate over non-access stratum signalling the use of e-I-DRX for reducing its power consumption, while being available for mobile terminating data and/or network originated procedures within a certain delay dependent on the DRX cycle value.

Applications that want to use e-I-DRX need to consider specific handling of mobile terminating services or data transfers, and in particular they need to consider the delay tolerance of mobile terminated data.

In order to negotiate the use of e-I-DRX, the UE requests e-I-DRX parameters during attach procedure and RAU/TAU procedure. The EPC may reject or accept the UE request for enabling e-I-DRX. In case the EPC accepts e-I-DRX, the EPC based on operator policies and, if available, the e-I-DRX cycle length value in the subscription data from the HSS, may also provide different values of the e-I-DRX parameters than what was requested by the UE. If the EPC accepts the use of e-I-DRX, the UE applies e-I-DRX based on the received e-I-DRX parameters. If the UE does not receive e-I-DRX parameters in the relevant accept message because the EPC rejected its request or because the request was received by EPC not supporting e-I-DRX, the UE shall apply its regular discontinuous reception.

If e-I-DRX is supported by the network, then it can be enabled by AT+CEDRXS=1 command.

NOTE

Please refer to document [2] for details about AT+CEDRXS command.

3.5. Power Supply

3.5.1. Power Supply Pins

BG96 provides the following four VBAT pins for connection with an external power supply. There are two separate voltage domains for VBAT.

- Two VBAT_RF pins for module's RF part.
- Two VBAT BB pins for module's baseband part.

The following table shows the details of VBAT pins and ground pins.

Table 6: VBAT and GND Pins

Pin Name	Pin No.	Description	Min.	Тур.	Max.	Unit
VBAT_RF	52, 53	Power supply for module's RF part	3.3	3.8	4.3	V
VBAT_BB	32, 33	Power supply for module's baseband part	3.3	3.8	4.3	V
GND	3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67~74, 79~82, 89~91, 100~102	Ground		-	-	-

3.5.2. Decrease Voltage Drop

The power supply range of the module is from 3.3V to 4.3V. Please make sure that the input voltage will never drop below 3.3V.

To decrease voltage drop, a bypass capacitor of about 100µF with low ESR should be used, and a multi-layer ceramic chip capacitor (MLCC) array should also be reserved due to its low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VBAT pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm, and the width of VBAT_RF trace should be no less than 2mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to get a stable power source, it is suggested to use a zener diode with reverse zener voltage of 5.1V and dissipation power more than 0.5W, and place it as close to the VBAT pins as possible. The following figure shows the star structure of the power supply.

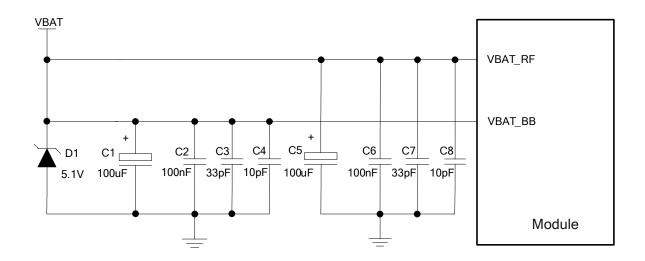


Figure 3: Star Structure of the Power Supply

3.5.3. Monitor the Power Supply

AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to **document [2]**.

3.6. Turn on and off Scenarios

3.6.1. Turn on Module Using the PWRKEY Pin

The following table shows the pin definition of PWRKEY.

Table 7: Pin Definition of PWRKEY

Pin Name	Pin No.	Description	DC Characteristics	Comment
PWRKEY	15	Turn on/off the module	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V	The output voltage is 0.8V because of the diode drop in the Qualcomm chipset.

When BG96 is in power off mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 100ms. It is recommended to use an open drain/collector driver to control the PWRKEY. After STATUS pin outputting a high level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure.

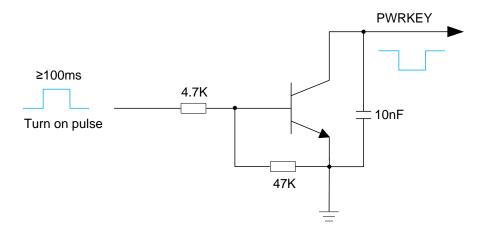


Figure 4: Turn on the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from the finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

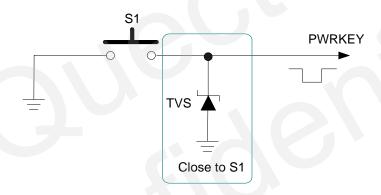


Figure 5: Turn on the Module Using Keystroke

The turn on scenario is illustrated in the following figure.

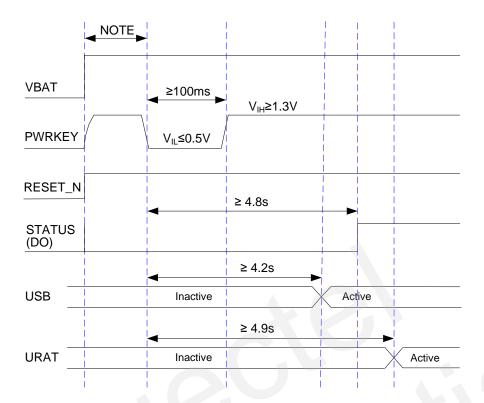


Figure 6: Timing of Turning on Module

NOTE

Make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms.

3.6.2. Turn off Module

Either of the following methods can be used to turn off the module:

- Normal power down procedure: Turn off the module using the PWRKEY pin.
- Normal power down procedure: Turn off the module using AT+QPOWD command.

3.6.2.1. Turn off Module Using the PWRKEY Pin

Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down procedure after the PWRKEY is released.

The power-down scenario is illustrated in the following figure.

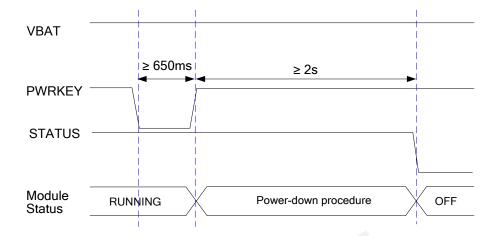


Figure 7: Timing of Turning off Module

3.6.2.2. Turn off Module Using AT Command

It is also a safe way to use **AT+QPOWD** command to turn off the module, which is similar to turning off the module via PWRKEY pin.

Please refer to document [2] for details about AT+QPOWD command.

3.7. Reset the Module

The RESET_N pin can be used to reset the module. The module can be reset by driving RESET_N to a low level voltage for time between 150ms and 460ms.

Table 8: RESET_N Pin Description

Pin Name	Pin No.	Description	DC Characteristics	Comment
RESET_N	17	Reset signal of the module	V_{IH} max=2.1 V V_{IH} min=1.3 V V_{IL} max=0.5 V	

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N.

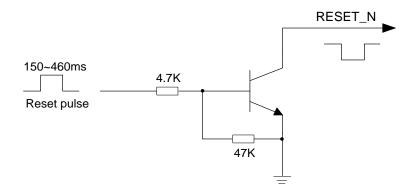


Figure 8: Reference Circuit of RESET_N by Using Driving Circuit

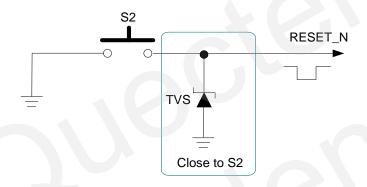


Figure 9: Reference Circuit of RESET_N by Using Button

The reset scenario is illustrated in the following figure.

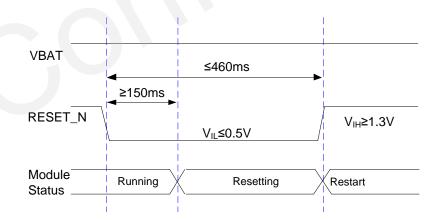


Figure 10: Timing of Resetting Module

NOTES

- 1. Use RESET_N only when turning off the module by **AT+QPOWD** command and PWRKEY pin both failed.
- 2. Ensure that there is no large capacitance on PWRKEY and RESET_N pins.

3.8. (U)SIM Interface

The (U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIM cards are supported.

Table 9: Pin Definition of (U)SIM Interface

Pin Name	Pin No.	I/O	Description	Comment
USIM_VDD	43	РО	Power supply for (U)SIM card	Either 1.8V or 3.0V is supported by the module automatically.
USIM_DATA	45	Ю	Data signal of (U)SIM card	
USIM_CLK	46	DO	Clock signal of (U)SIM card	
USIM_RST	44	DO	Reset signal of (U)SIM card	
USIM_ PRESENCE	42	DI	(U)SIM card insertion detection	
USIM_GND	47		Specified ground for (U)SIM card	

BG96 supports (U)SIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and high level detections, and is disabled by default. Please refer to **document [2]** about **AT+QSIMDET** command for details.

The following figure shows a reference design of (U)SIM interface with an 8-pin (U)SIM card connector.

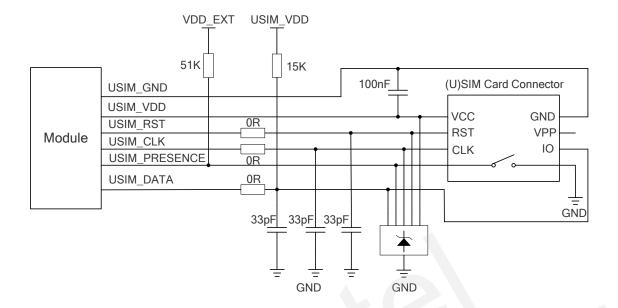


Figure 11: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector

If (U)SIM card detection function is not needed, please keep USIM_PRESENCE unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

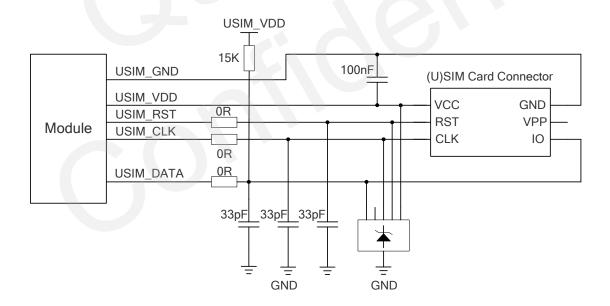


Figure 12: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector

In order to enhance the reliability and availability of the (U)SIM card in applications, please follow the criteria below in (U)SIM circuit design:

- Keep placement of (U)SIM card connector as close to the module as possible. Keep the trace length as less than 200mm as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.
- Assure the ground between the module and the (U)SIM card connector short and wide. Keep the
 trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.
 Make sure the bypass capacitor between USIM_VDD and USIM_GND less than 1uF, and place it as
 close to (U)SIM card connector as possible. If the system ground plane is complete, USIM_GND can
 be connected to the system ground directly.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground. USIM_RST should also be ground shielded.
- In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic capacitance not exceeding 15pF. In order to facilitate debugging, it is recommended to reserve series resistors for the (U)SIM signals of the module. The 33pF capacitors are used for filtering interference of GSM 900MHz. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and should be placed close to the (U)SIM card connector.

3.9. USB Interface

BG96 contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command communication, data transmission, software debugging and firmware upgrade. The following table shows the pin definition of USB interface.

Table 10: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	8	PI	USB connection detection	Typically 5.0V
USB_DP	9	Ю	USB differential data bus (+)	Require differential impedance of 90Ω
USB_DM	10	Ю	USB differential data bus (-)	Require differential impedance of 90Ω
GND	3		Ground	

For more details about USB 2.0 specification, please visit http://www.usb.org/home.

The USB interface is recommended to be reserved for firmware upgrade in customers' designs. The following figure shows a reference circuit of USB interface.

Figure 13: Reference Circuit of USB Application

In order to ensure signal integrity of USB data lines, components R1, R2, R3 and R4 must be placed close to the module, and also should be placed close to each other. The extra stubs of traces must be as short as possible.

The following principles should be complied with when design the USB interface, so as to meet USB 2.0 specification.

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90Ω.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding on not only upper and lower layers but also right and left sides.
- Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF.
- Keep the ESD protection components as close to the USB connector as possible.

NOTE

BG96 module can only be used as a slave device.

3.10. UART Interfaces

The module provides three UART interfaces: UART1, UART2 and UART3 interfaces. The following are their features.

- UART1 interface supports 9600, 19200, 38400, 57600, 115200, 230400, 460800 and 921600 baud rates, and the default is 115200bps. It is used for data transmission and AT command communication.
- UART2 interface supports 115200bps baud rate. It is used for module debugging and log output.
- UART3 interface supports 115200bps baud rate. It is used for outputting GNSS data and NEMA sentences.

The following tables show the pin definition of the three UART interfaces.

Table 11: Pin Definition of UART1 Interface

Pin Name	Pin No.	I/O	Description	Comment
DTR	30	DI	Data terminal ready	1.8V power domain
RXD	34	DI	Receive data	1.8V power domain
TXD	35	DO	Transmit data	1.8V power domain
CTS	36	DO	Clear to send	1.8V power domain
RTS	37	DI	Request to send	1.8V power domain
DCD	38	DO	Data carrier detection	1.8V power domain
RI	39	DO	Ring indicator	1.8V power domain

Table 12: Pin Definition of UART2 Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_TXD	23	DO	Transmit data	1.8V power domain
DBG_RXD	22	DI	Receive data	1.8V power domain

Table 13: Pin Definition of UART3 Interface

Pin Name	Pin No.	I/O	Description	Comment
UART3_TXD	27	DO	Transmit data	1.8V power domain
UART3_RXD	28	DI	Receive data	1.8V power domain

The logic levels are described in the following table.

Table 14: Logic Levels of Digital I/O

Parameter	Min.	Max.	Unit
V_{IL}	-0.3	0.6	V
V _{IH}	1.2	2.0	V
V _{OL}	0	0.45	V
V _{OH}	1.35	1.8	V

The module provides 1.8V UART interface. A level translator should be used if customers' application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by *Texas Instruments* is recommended. The following figure shows a reference design.

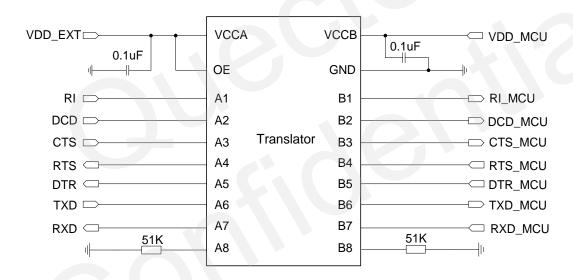


Figure 14: Reference Circuit with Translator Chip

Please visit http://www.ti.com for more information.

Another example with transistor translation circuit is shown as below. The circuit design of dotted line section can refer to that of solid line section, in terms of both module input and output circuit designs, but please pay attention to the direction of connection.

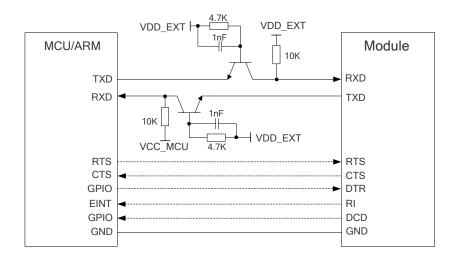


Figure 15: Reference Circuit with Transistor Circuit

NOTE

Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.

3.11. PCM* and I2C* Interfaces

BG96 provides one Pulse Code Modulation (PCM*) digital interface and one I2C* interface. The following table shows the pin definition of the two interfaces which can be applied on audio codec design.

Table 15: Pin Definition of PCM* and I2C* Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PCM_CLK*	4	DO	PCM clock output	1.8V power domain
PCM_SYNC*	5	DO	PCM frame synchronization output	1.8V power domain
PCM_IN*	6	DI	PCM data input	1.8V power domain
PCM_OUT*	7	DO	PCM data output	1.8V power domain
I2C_SCL*	40	OD	I2C serial clock	Require external pull-up to 1.8V
I2C_SDA*	41	OD	I2C serial data	Require external pull-up to 1.8V

The following figure shows a reference design of PCM* and I2C* interfaces with an external codec IC.

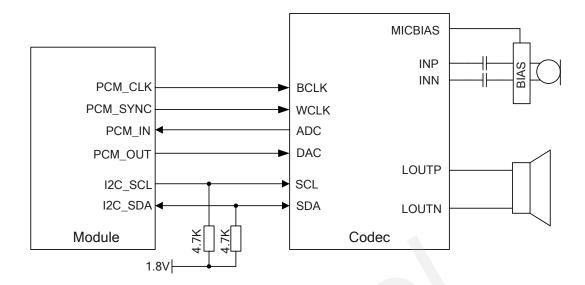


Figure 16: Reference Circuit of PCM Application with Audio Codec

NOTE

"*" means under development.

3.12. Network Status Indication

BG96 provides one network status indication pin: NETLIGHT. The pin is used to drive a network status indication LED. The following tables describe the pin definition and logic level changes of NETLIGHT in different network activity status.

Table 16: Pin Definition of NETLIGHT

Pin Name	Pin No.	I/O	Description	Comment
NETLIGHT	21	DO	Indicate the module's network activity status	1.8V power domain

Table 17: Working State of NETLIGHT

Pin Name	Logic Level Changes	Network Status
NETLIGHT	Flicker slowly (200ms High/1800ms Low)	Network searching

Flicker slowly (1800ms High/200ms Low)	Idle
Flicker quickly (125ms High/125ms Low)	Data transfer is ongoing
Always high	Voice calling

A reference circuit is shown in the following figure.

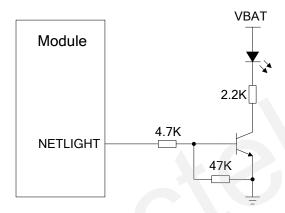


Figure 17: Reference Circuit of the Network Status Indicator

3.13. STATUS

The STATUS pin is used to indicate the operation status of BG96 module. It will output high level when the module is powered on.

The following table describes the pin definition of STATUS.

Table 18: Pin Definition of STATUS

Pin Name	Pin No.	I/O	Description	Comment
STATUS	20	DO	Indicate the module's operation status	1.8V power domain

The following figure shows a reference circuit of STATUS.

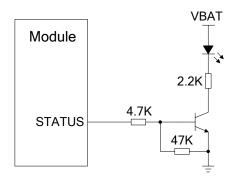


Figure 18: Reference Circuit of STATUS

3.14. Behaviors of RI

AT+QCFG="risignaltype", "physical" command can be used to configure RI behavior.

No matter on which port URC is presented, URC will trigger the behavior of RI pin.

NOTE

URC can be outputted from UART port, USB AT port and USB modem port, through configuration via **AT+QURCCFG** command. The default port is USB AT port.

The default behaviors of RI are shown as below.

Table 19: Default Behaviors of RI

State	Response
Idle	RI keeps in high level.
URC	RI outputs 120ms low pulse when new URC returns.

The default RI behaviors can be configured flexibly by **AT+QCFG="urc/ri/ring"** command. For more details, please refer to *document* [2].

3.15. USB_BOOT Interface

BG96 provides a USB_BOOT pin. During development or factory production, USB_BOOT can force the module to boot from USB port for firmware upgrade.

Table 20: Pin Definition of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	75	DI	Force the module to enter into emergency download mode	1.8V power domain.Active high.If unused, keep it open.

The following figure shows a reference circuit of USB_BOOT interface.

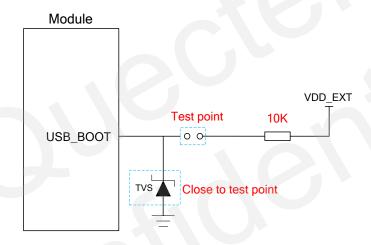


Figure 19: Reference Circuit of USB_BOOT Interface

NOTE

It is recommended to reserve the above circuit design during application design.

4 GNSS Receiver

4.1. General Description

BG96 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou/Compass, Galileo and QZSS).

BG96 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default.

By default, BG96 GNSS engine is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to **document [3]**.

4.2. GNSS Performance

The following table shows the GNSS performance of BG96.

Table 21: GNSS Performance

Parameter	Description	Conditions	Тур.	Unit
Sensitivity (GNSS)	Cold start	Autonomous	TBD	dBm
	Reacquisition	Autonomous	TBD	dBm
	Tracking	Autonomous	TBD	dBm
TTFF (GNSS)	Cold start @open sky Warm start @open sky	Autonomous	TBD	S
		XTRA* enabled	TBD	S
		Autonomous	TBD	S
		XTRA* enabled	TBD	S
	Hot start	Autonomous	TBD	S

	@open sky	XTRA* enabled	TBD	S
Accuracy (GNSS)	CEP-50	Autonomous @open sky	TBD	m

NOTES

- 1. Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep on positioning for 3 minutes.
- 2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can fix position again within 3 minutes after loss of lock.
- 3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes position within 3 minutes after executing cold start command.
- 4. "*" means under development.

4.3. Layout Guidelines

The following layout guidelines should be taken into account in customers designs.

- Maximize the distance between GNSS antenna and main antenna.
- Digital circuits such as (U)SIM card, USB interface, camera module, display connector and SD card should be kept away from the antennas.
- Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection.
- Keep 50Ω characteristic impedance for the ANT_GNSS trace.

Please refer to *Chapter 5* for GNSS antenna reference design and antenna installation information.

5 Antenna Interfaces

BG96 includes a main antenna interface and a GNSS antenna interface. The antenna interfaces have an impedance of 50Ω .

5.1. Main Antenna Interface

5.1.1. Pin Definition

The pin definition of main antenna interface is shown below.

Table 22: Pin Definition of Main Antenna Interface

Pin Name	Pin No.	1/0	Description	Comment
ANT_MAIN	60	10	Main antenna interface	50Ω impedance

5.1.2. Operating Frequency

Table 23: Module Operating Frequencies

3GPP Band	Transmit	Receive	Unit
B1	1920~1980	2110~2170	MHz
B2 (PCS1900)	1850~1910	1930~1990	MHz
B3 (DCS1800)	1710~1785	1805~1880	MHz
B4	1710~1755	2110~2155	MHz
B5 (GSM850)	824~849	869~894	MHz
B8 (GSM900)	880~915	925~960	MHz
B12	699~716	728~746	MHz

B13	777~787	746~757	MHz
B18	815~829.9	860~874.9	MHz
B19	830~844.9	875~889.9	MHz
B20	832~862	791~821	MHz
B26	814~848.9	859~893.9	MHz
B28	703~748	758~803	MHz
B39	1880~1920	1880~1920	MHz

5.1.3. Reference Design of RF Antenna Interface

A reference design of main antenna pad is shown as below. A π -type matching circuit should be reserved for better RF performance, and the π -type matching components (R1/C1/C2) should be placed as close to the antenna as possible. The capacitors are not mounted by default.

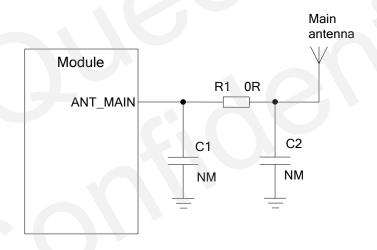


Figure 20: Reference Circuit of RF Antenna Interface

5.1.4. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled as 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the distance between signal layer and reference ground (H), and the clearance between RF trace and ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic impedance control. The following are reference designs of microstrip line or coplanar waveguide line with different PCB structures.

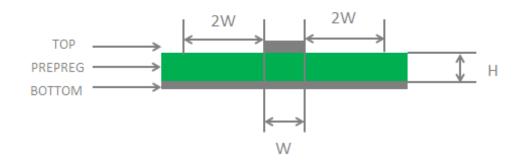


Figure 21: Microstrip Line Design on a 2-layer PCB

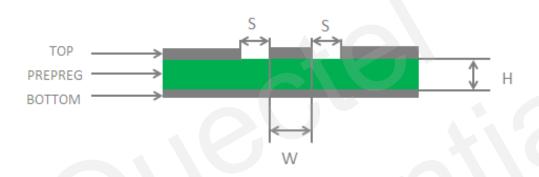


Figure 22: Coplanar Waveguide Line Design on a 2-layer PCB

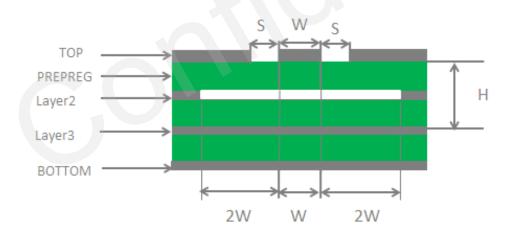


Figure 23: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)

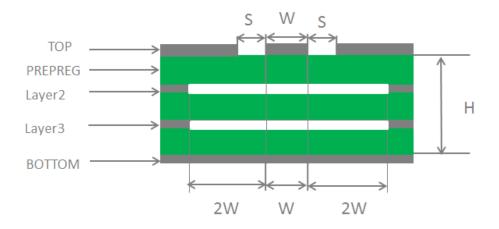


Figure 24: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use impedance simulation tool to control the characteristic impedance of RF traces as 50Ω.
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right angle traces should be changed to curved ones.
- There should be clearance area under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).

For more details about RF layout, please refer to document [4].

5.2. GNSS Antenna Interface

The following tables show the pin definition and frequency specification of GNSS antenna interface.

Table 24: Pin Definition of GNSS Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	49	Al	GNSS antenna interface	50Ω impedance

Table 25: GNSS Frequency

Туре	Frequency	Unit
GPS/Galileo/QZSS	1575.42±1.023	MHz
GLONASS	1597.5~1605.8	MHz
BeiDou	1561.098±2.046	MHz

A reference design of GNSS antenna interface is shown as below.

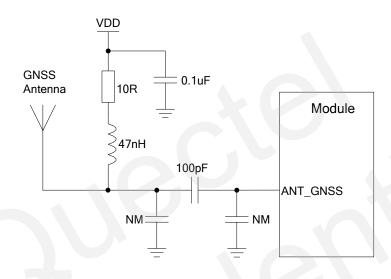


Figure 25: Reference Circuit of GNSS Antenna Interface

NOTES

- 1. An external LDO can be selected to supply power according to the active antenna requirement.
- 2. If the module is designed with a passive antenna, then the VDD circuit is not needed.

5.3. Antenna Installation

5.3.1. Antenna Requirements

The following table shows the requirements on main antenna and GNSS antenna.

Table 26: Antenna Requirements

Antenna Type	Requirements
	VSWR: ≤ 2
	Gain (dBi): 1
	Max Input Power (W): 50
	Input Impedance (Ω): 50
LTE/GSM Antenna	Polarization Type: Vertical
LTE/GSM Afterina	Cable Insertion Loss: < 1dB
	(LTE B5/B8/B12/B13/B18/B19/B20/B26/B28
	GSM850/GSM900)
	Cable Insertion Loss: < 1.5dB
	(LTE B1/B2/B3/B4/B39, DCS1800/PCS1900)
	Frequency range: 1561~1615MHz
	Polarization: RHCP or linear
	VSWR: < 2 (Typ.)
GNSS Antenna	Passive antenna gain: > 0dBi
GNSS Afflerina	Active antenna noise figure: < 1.5dB
	Active antenna gain: > -2dBi
	Active antenna embedded LNA gain: 20dB (Typ.)
	Active antenna total gain: > 18dBi (Typ.)

5.3.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use the UF.L-R-SMT connector provided by *HIROSE*.

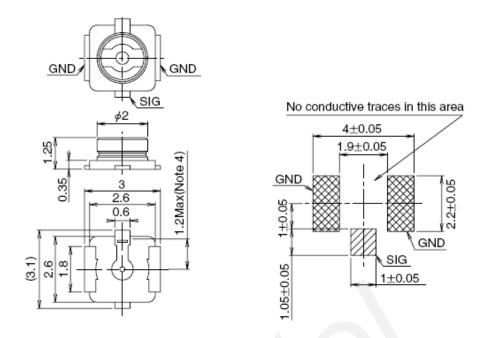


Figure 26: Dimensions of the UF.L-R-SMT Connector (Unit: mm)

U.FL-LP serial connectors listed in the following figure can be used to match the UF.L-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	4	E	87 3.4	87	582
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 27: Mechanicals of UF.L-LP Connectors

The following figure describes the space factor of mated connector.

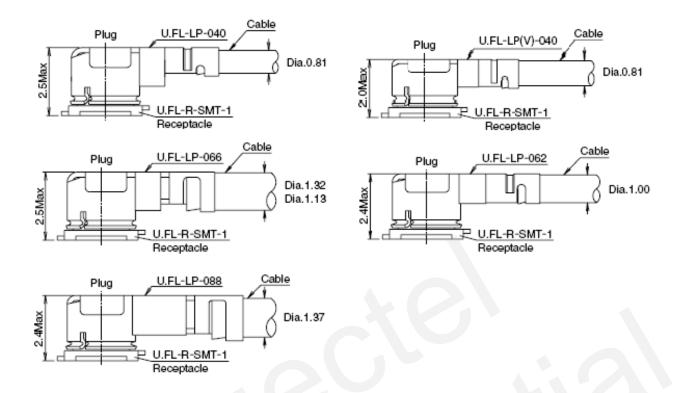


Figure 28: Space Factor of Mated Connector (Unit: mm)

For more details, please visit http://www.hirose.com.

6 Electrical, Reliability and Radio Characteristics

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 27: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_BB	-0.3	4.7	V
VBAT_RF	-1.2	6	V
USB_VBUS	-0.3	5.5	V
Voltage at Digital Pins	-0.3	2.3	V

6.2. Power Supply Ratings

Table 28: Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF	The actual input voltages must stay between the minimum and maximum values.	3.3	3.8	4.3	V
I _{VBAT}	Peak supply current	Max power=23dBm 1RB @LTE Cat.M1		190	447	mA

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
USB_VBUS	USB detection		3.0	5.0	5.25	V

6.3. Operation Temperature

The operation temperature of the module is listed in the following table.

Table 29: Operation Temperature

Parameter	Min.	Тур.	Max.	Unit
Operation Temperature Range 1)	-35	+25	+75	°C
Extended Temperature Range ²⁾	-40		+85	°C

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

6.4. Current Consumption

The following table shows current consumption of BG96 module.

Table 30: BG96 Current Consumption

Parameter	Description	Conditions	Тур.	Unit
	OFF State	Power off mode	8	uA
I _{VBAT}	Minimum Functionality Mode	AT+CFUN=0 (UART and USB disconnected)	0.8	mA

	Power Saving	PSM @LTE Cat.M1 network	10.4	uA
	Mode	PSM @LTE Cat.NB1 network	9.8	uA
	Standby State	DRX=1.28s @LTE Cat.M1 network (UART and USB disconnected)	1.99	mA
	Standby State	e-I-DRX=20.48s @LTE Cat.NB1 network (UART and USB disconnected)	2.77	mA
		23dBm @Instrument	190	mA
	LTE Cat.M1 data transfer (GNSS OFF)	18dBm @Instrument	155	mA
		12dBm @Instrument	136	mA
		0dBm @Instrument	124	mA
		23dBm @Instrument	TBD	mA
	LTE Cat.NB1	18dBm @Instrument	TBD	mA
	data transfer (GNSS OFF)	12dBm @Instrument	TBD	mA
		0dBm @Instrument	TBD	mA
	LTE Cat.M1 Voice (GNSS OFF)	Voice @LTE Cat.M1 network	108	mA

6.5. RF Output Power

The following table shows the RF output power of BG96 module.

Table 31: RF Output Power

Frequency	Max.	Min.
LTE-FDD B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28	23dBm±2.7dB	<-44dBm
LTE-TDD B39	23dBm±2.7dB	<-44dBm
GSM850/GSM900	33dBm±2dB	5dBm±5dB
DCS1800/PCS1900	30dBm±2dB	0dBm±5dB

GSM850/GSM900 (8-PSK)	27dBm±3dB	5dBm±5dB
DCS1800/PCS1900 (8-PSK)	26dBm±3dB	0dBm±5dB

6.6. RF Receiving Sensitivity

The following table shows the conducted RF receiving sensitivity of BG96 module.

Table 32: BG96 Conducted RF Receiving Sensitivity

				Sensitivity (dBm)		
Network	Band	Primary	Diversity	Cat.M1/3GPP	Cat.NB1/3GPP	
	LTE-FDD B1			-107.0/-102.7	-117/-107.5	
	LTE-FDD B2			-106.7/-100.3	-117/-107.5	
	LTE-FDD B3			-106.8/-99.3	-117/-107.5	
-	LTE-FDD B4		-	-106.9/-102.3	-117/-107.5	
-	LTE-FDD B5		Not Supported	-107.0/-100.8	-117/-107.5	
-	LTE-FDD B8			-107.3/-99.8	-117/-107.5	
LTE -	LTE-FDD B12	Supported		-107.7/-99.3	-117/-107.5	
LIE	LTE-FDD B13			-106.5/-99.3	TBD/-107.5	
-	LTE-FDD B18			-107.5/-102.3	-119/-107.5	
-	LTE-FDD B19			-107.1/-102.3	-119/-107.5	
-	LTE-FDD B20			-107.2/-99.8	-118/-107.5	
-	LTE-FDD B26		-	-107.1/-100.3	-118/-107.5	
-	LTE-FDD B28		-	-107.2/-100.8	-118/-107.5	
-	LTE-TDD B39		-	TBD /-103	Not Supported	
Network	Band	Primary	Diversity	Sensitivity (dBm)		
Network	Danu	Primary	Diversity	GSN	M/3GPP	

GSM	GSM850/GSM900	Not Not	-109/-102.4	
	DCS1800/PCS1900	Supported	Supported Supported	-108.5/-102.4

6.7. Electrostatic Discharge

The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the electrostatic discharge characteristics of BG96 module.

Table 33: Electrostatic Discharge Characteristics

Tested Points	Contact Discharge	Air Discharge	Unit
VBAT, GND	±10	±15	kV
Main/GNSS Antenna Interfaces	±10	±15	kV

7 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm, and the tolerances for dimensions without tolerance values are ±0.05mm.

7.1. Mechanical Dimensions of the Module

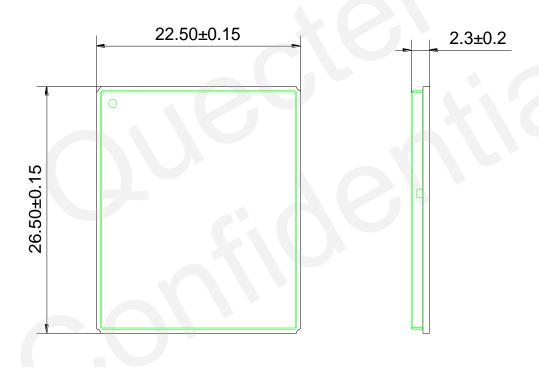


Figure 29: Module Top and Side Dimensions

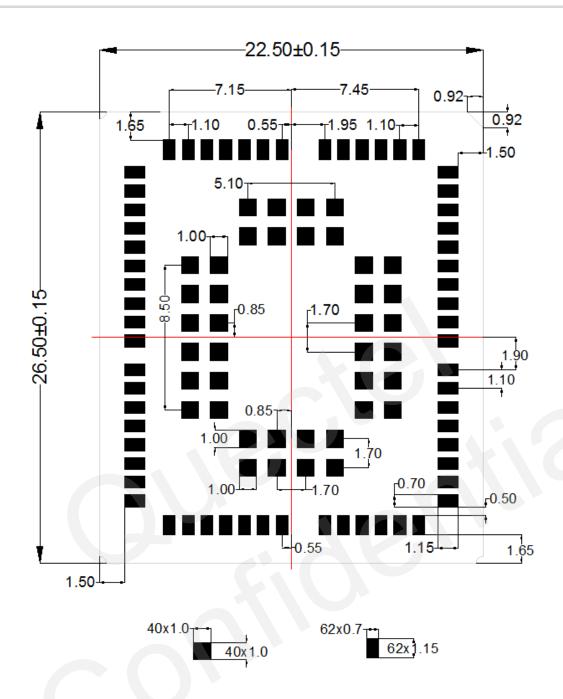


Figure 30: Module Bottom Dimensions (Bottom View)

7.2. Recommended Footprint and Stencil Design

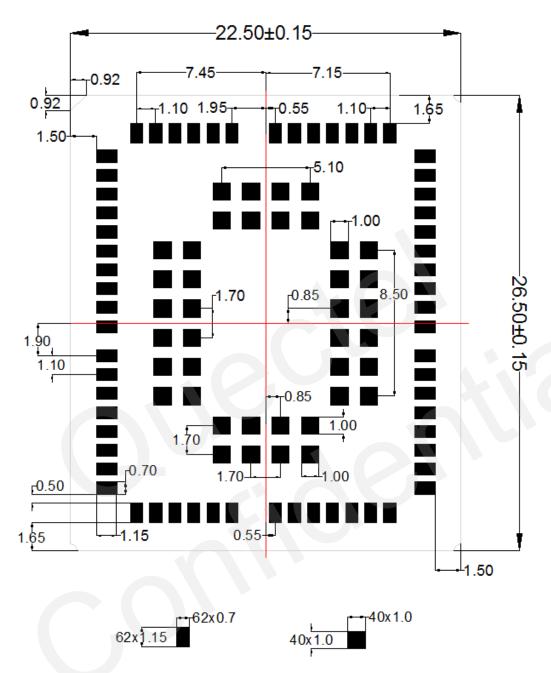


Figure 31: Recommended Footprint (Top View)

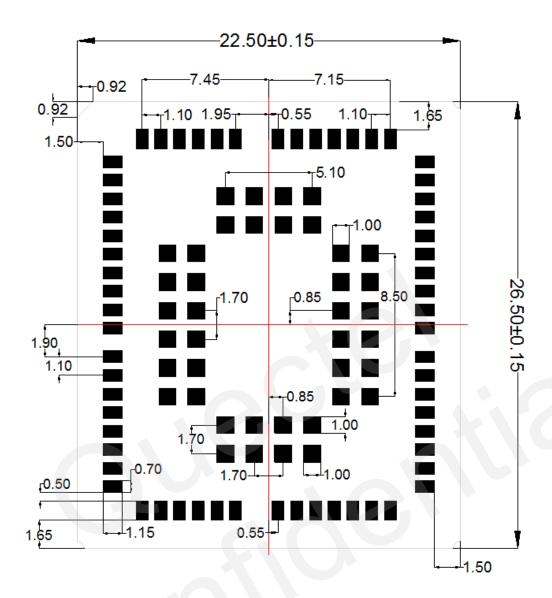


Figure 32: Recommended Stencil Design (Top View)

NOTES

- 1. For easy maintenance of the module, please keep about 3mm between the module and other components on the host PCB.
- 2. All reserved pins must be kept open.

7.3. Design Effect Drawings of the Module

Figure 33: Top View of the Module

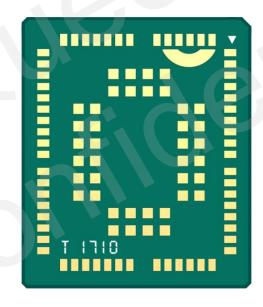


Figure 34: Bottom View of the Module

NOTE

These are design effect drawings of BG96 module. For more accurate pictures, please refer to the module that you get from Quectel.

8 Storage, Manufacturing and Packaging

8.1. Storage

BG96 is stored in a vacuum-sealed bag. The storage restrictions are shown as below.

- 1. Shelf life in the vacuum-sealed bag: 12 months at <40°C/90%RH.
- 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
 - Mounted within 168 hours at the factory environment of ≤30°C/60%RH.
 - Stored at <10%RH.
- 3. Devices require baking before mounting, if any circumstance below occurs.
 - When the ambient temperature is 23°C±5°C and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
 - Device mounting cannot be finished within 168 hours at factory conditions of ≤30°C/60%
- 4. If baking is required, devices may be baked for 48 hours at 125°C±5°C.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devices before high temperature (125°C) baking. If shorter baking time is desired, please refer to *IPC/JEDECJ-STD-033* for baking procedure.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.18mm. For more details, please refer to **document [5]**.

It is suggested that the peak reflow temperature is 235~245°C (for SnAg3.0Cu0.5 alloy). The absolute max reflow temperature is 260°C. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below.

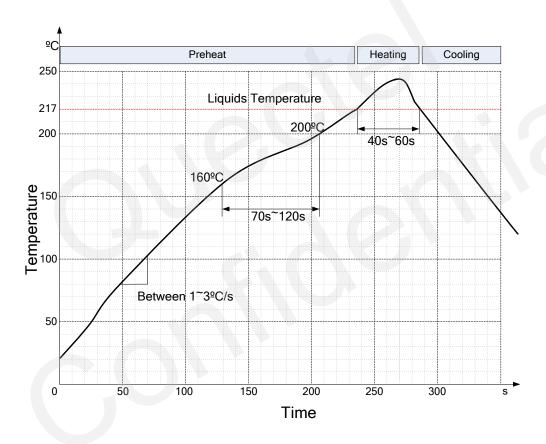


Figure 35: Reflow Soldering Thermal Profile

8.3. Packaging

BG96 is packaged in a vacuum-sealed bag which is ESD protected. The bag should not be opened until the devices are ready to be soldered onto the application.

The reel is 330mm in diameter and each reel contains 250 modules. The following figures show the packaging details, measured in mm.

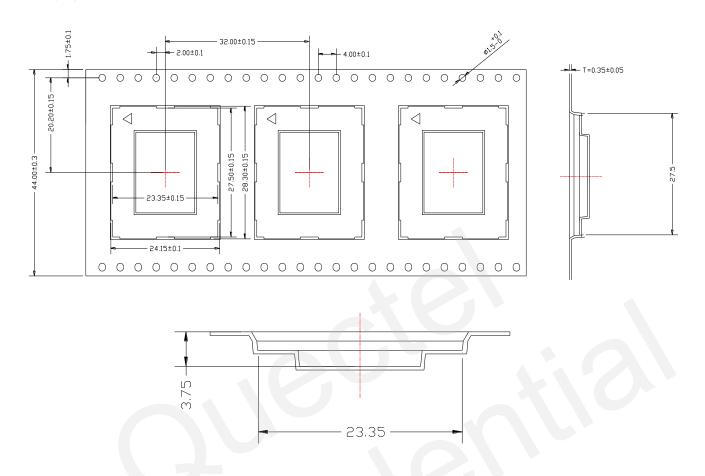


Figure 36: Tape Dimensions

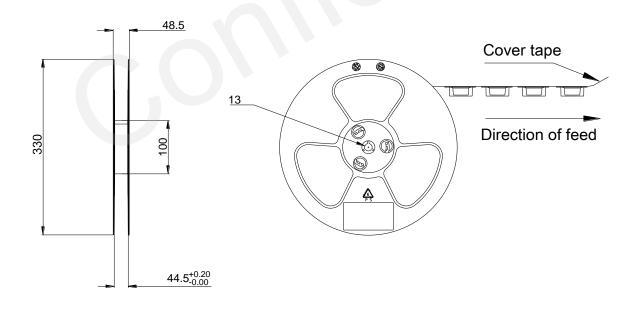


Figure 37: Reel Dimensions

Table 34: Reel Packaging

Model Name	MOQ for MP	Minimum Package: 250pcs	Minimum Package x 4=1000pcs
		Size: 370mm × 350mm × 56mm	Size: 380mm × 250mm × 365mm
BG96	250pcs	N.W: 0.78kg	N.W: 3.1kg
		G.W: 1.46kg	G.W: 6.45kg

9 Appendix A References

Table 35: Related Documents

SN	Document Name	Remark
[1]	Quectel_UMTS<E-EVB_User_Guide	UMTS<E-EVB User Guide
[2]	Quectel_BG96_AT_Commands_Manual	BG96 AT Commands Manual
[3]	Quectel_BG96_GNSS_AT_Commands_Manual	BG96 GNSS AT Commands Manual
[4]	Quectel_RF_Layout_Application_Note	RF Layout Application Note
[5]	Quectel_Module_Secondary_SMT_User_Guide	Module Secondary SMT User Guide

Table 36: Terms and Abbreviations

Abbreviation	Description
AMR	Adaptive Multi-rate
bps	Bits Per Second
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CTS	Clear To Send
DFOTA	Delta Firmware Upgrade Over The Air
DL	Downlink
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
e-I-DRX	Extended Idle Mode Discontinuous Reception
EPC	Evolved Packet Core
ESD	Electrostatic Discharge

FDD	Frequency Division Duplex
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GSM	Global System for Mobile Communications
HSS	Home Subscriber Server
I/O	Input/Output
Inorm	Normal Current
LED	Light Emitting Diode
LNA	Low Noise Amplifier
LTE	Long Term Evolution
MO	Mobile Originated
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
PSM	Power Saving Mode
RF	Radio Frequency
RHCP	Right Hand Circularly Polarized
Rx	Receive
SISO	Single Input Single Output
SMS	Short Message Service
TDD	Time Division Duplexing
TX	Transmitting Direction
UL	Uplink
UE	User Equipment

URC	Unsolicited Result Code
(U)SIM	(Universal) Subscriber Identity Module
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
V _{IH} max	Maximum Input High Level Voltage Value
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
V _{IL} min	Minimum Input Low Level Voltage Value
V _I max	Absolute Maximum Input Voltage Value
V _I min	Absolute Minimum Input Voltage Value
V _{OH} max	Maximum Output High Level Voltage Value
V _{OH} min	Minimum Output High Level Voltage Value
V _{OL} max	Maximum Output Low Level Voltage Value
V _{OL} min	Minimum Output Low Level Voltage Value
VSWR	Voltage Standing Wave Ratio

10 Appendix B GPRS Coding Schemes

Table 37: Description of Different Coding Schemes

Scheme	CS-1	CS-2	CS-3	CS-4
Code Rate	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	-
Data Rate Kb/s	9.05	13.4	15.6	21.4

11 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.

The description of different multi-slot classes is shown in the following table.

Table 38: GPRS Multi-slot Classes

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
33	5	4	6

12 Appendix D EDGE Modulation and Coding Schemes

Table 39: EDGE Modulation and Coding Schemes

Coding Schemes	Modulation	Coding Family	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	GMSK	/	9.05kbps	18.1kbps	36.2kbps
CS-2:	GMSK	1	13.4kbps	26.8kbps	53.6kbps
CS-3:	GMSK	1	15.6kbps	31.2kbps	62.4kbps
CS-4:	GMSK	1	21.4kbps	42.8kbps	85.6kbps
MCS-1	GMSK	С	8.80kbps	17.60kbps	35.20kbps
MCS-2	GMSK	В	11.2kbps	22.4kbps	44.8kbps
MCS-3	GMSK	A	14.8kbps	29.6kbps	59.2kbps
MCS-4	GMSK	С	17.6kbps	35.2kbps	70.4kbps
MCS-5	8-PSK	В	22.4kbps	44.8kbps	89.6kbps
MCS-6	8-PSK	A	29.6kbps	59.2kbps	118.4kbps
MCS-7	8-PSK	В	44.8kbps	89.6kbps	179.2kbps
MCS-8	8-PSK	A	54.4kbps	108.8kbps	217.6kbps
MCS-9	8-PSK	A	59.2kbps	118.4kbps	236.8kbps